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The main objective of this study was to analyze anomalies voluntarily reported by pilots in civil aviation sector 
and identify factors leading to such anomalies. Experimental data were obtained from the NASA aviation 
safety reporting system (ASRS) database. These data contained a range of text records spanning 30 years of 
civilian aviation, both commercial (airline operations) and general aviation (private aircraft). Narrative data 
as well as categorical data were used. The associations between incident contributing factors and self-
reported anomalies were investigated using data mining and correspondence analysis. The results revealed 
that a broadly defined human factors category and weather conditions were the main contributors to self-
reported civil aviation anomalies. New associations between identified factors and reported anomaly condi-
tions were also reported.
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1. INTRODUCTION

Airline operations are very complex due to the 
intricate interactions between aircraft, pilots, main-
tenance personnel, air traffic controllers as well as 
seemingly more random variables such as weather, 
passengers, and the mental states of all those 
involved. The opportunities for errors, mishaps, 
and accidents are vast, with a multitude of poten-
tial causal factors. However, these problems also 
present opportunities for self-correcting actions, 
both human and machine in nature. Pilot errors 
have been previously reported to account for over 
50% of incidents and accidents in most accident 
databases [1]. Over 70% of the incidents in the 
NASA aviation safety reporting system (ASRS) 
database were reported as caused by “human error” 
or, specifically, “pilot error” [2]. It is very tempting 
for investigators to use the blanket statement “pilot 
error” to attribute a cause to aircraft incidents as it 
encompasses many conditions while still offering 

the illusion of explanatory power. However, the 
term “pilot error” on its own does not contribute to 
the understanding of causal factors. More impor-
tantly, calling the cause “pilot error” does very lit-
tle to help manage the conditions leading to the 
flight anomalies or incidents. 

Although recent advancements in pilot training, 
hardware improvements, and regulations led to a 
noticeable decrease in the aviation accident rate 
over the past 30 years [3], managing the available 
sheer volume of aviation data being created is still 
an important issue. There is also a significant 
amount of “noise”, which may mask key elements 
of data that allow conclusions about causality. 
Modern methods of data mining and visualizing 
have become very useful in meeting a challenge of 
information overload in general, as the amount of 
data being generated in the 21st century limits its 
usability to draw inferences. It is estimated that 
every year one exabyte of data, mostly digital in 
nature, is generated by human society. This trend 
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means that, during a study period between 2002 
and 2005, more data were generated than had 
been in all of prior human history [4]. 

2.	HUMAN ERRORS IN AVIATION

2.1.	Human Error Management

Understanding human errors can be useful in pre-
dicting and quantifying aviation safety perform-
ance. According to Reason, many systems oper-
ate for long periods with inherent safety flaws 
present within them [5]. These latent flaws are 
not revealed until an accident or incident occurs. 
Sträter claims that stakeholders may even know 
and tolerate some system flaws because of the 
following two states:

1.	Nothing happened so far in my system => it is 
safe,

2.	My system is safe => nothing will happen in 
my system [6].

Statement 2 is a simple reversion of inference 
from statement 1; however, this state may not 
actually be achieved. The appropriate way to con-
sider either of the two statements is “There are 
unsafe elements in my system”. Identifying and 
managing the above “unsafe elements”, in most 
cases prevents incidents and leads to increased 
safety and higher performance, as the system no 
longer has to recover from unsafe conditions. 
Baker, Qiang, Rebok, et al., who investigated 
longitudinal trends among 558 U.S. air carrier 
mishaps, corroborated these findings [7]. The 
study revealed a 71% reduction in poor decisions 
being made while the airplane was underway 
between 1998 and 2002. However, the proportion 
of mishaps resulting from pilot error remained at 
25%. Baker et al. stressed that the overall mishap 
rate remained stable, only those mishaps involv-
ing poor decisions (pilot error) decreased over the 
study period.

Human performance models of pilot behavior 
can also be tailored to individual tasks to increase 
their predictive capabilities [8]. Dismukes consid-
ered pilot omissions of procedural steps to be a 
form of prospective memory error [9]. Under-

standing mechanics of prospective memory errors 
and the conditions that are associated with them, 
allow designers and regulators to create proce-
dures and designs that preclude these causal fac-
tors from existing. For example, Fischer and 
Orasanu found that the hierarchy within the cock-
pit influenced team behavior, with captains more 
likely to command when requesting actions of 
subordinates, while first officers hinted rather 
than directly stated their expectations of desired 
behavior [10]. This imbalance in communication 
strategies may cause errors when the check and 
balance system afforded by two team members is 
now effectively null because of the subordinate 
crew member’s reluctance to use stronger lan-
guage or challenge a superior’s decision or 
action. 

To aid in classifying, identifying, and mitigat-
ing the types of errors encountered in civil and 
military aviation, Wiegmann and Shappell cre-
ated the human factors analysis and classification 
system (HFACS) [3]. The resulting taxonomy 
incorporates latent and active failures as well as 
preconditions and unsafe acts in an effort to cover 
all eventualities of error and outcome types. Li, 
Harris, and Yu employed HFACS to analyze 41 
civil aviation accidents to describe the relation-
ships between elements within HFACS using 
empirical data [11]. The findings corroborated the 
HFACS model assumption that active failures 
were exacerbated by the presence of latent fail-
ures within the organization perpetrating the 
errors. Furthermore, significant operational deci-
sions made at the upper management level “trick-
led down” and led directly to unsafe supervisory 
practices. These unsafe supervisory practices 
were shown to contribute to unsafe pre-existing 
conditions that impaired pilot performance and 
increased possibility of accidents occurring. 
O’Hare employed a taxonomic approach in acci-
dent analysis to develop a framework for heuris-
tic, investigative, and integrative functions of 
accident analysis and consideration of latent con-
ditions and related human factors [12].

2.2. Precursor Analysis and Taxonomies

Other methods such as a precursor analysis have 
revealed novel findings on aviation investigation 
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of accidents. The rationale for precursor analysis 
is that studying accident conditions yields 
insights about the accident itself. Phimister, Bier, 
and Kunreuther documented many benefits of 
precursor analysis [13]. Accidents are seemingly 
rare when viewed in light of the many safe flights 
completed every day. Aircraft anomalous events, 
however, are far more numerous. The causal fac-
tors contributing to these anomalies are not 
widely understood, though the conditions sur-
rounding anomalies are often identical to those 
surrounding accidents. Surveying the more plen-
tiful anomaly data will yield valuable insights as 
to what factors contribute to the occurrence of 
aircraft anomalous events. Understanding these 
factors can lead to improved management of such 
factors and, in turn, provide additional informa-
tion into how to decrease the rate of accidents. 
For example, Liang, Lin, Hwang, et al. proposed 
a method for preventing error during aircraft 
maintenance [14]. Using Swain and Guttmann’s 
concept of performance shaping factors (PSFs), a 
plan for preventing maintenance errors was cre-
ated [15]. Frequencies of PSFs were linked to 
maintenance errors committed, and those PSFs 
with the highest frequencies were targeted for 
process improvement. Aircraft maintenance has 
been identified as an increasingly larger contribu-
tor to aviation incidents and, as airlines cut budg-
ets and streamline operations, maintenance errors 
will continue to play a larger role. Gramopadhye 
and Drury provide an excellent review of trends 
and future work in the aviation maintenance 
domain [16]. 

Other methods of analyzing incident causes 
involve classifying and clustering such causes. 
The goal of this activity is to identify emerging 
patterns between similar categories. Benefits of 
further describing and developing the “umbrella” 
label of human error have been demonstrated by 
studies that create taxonomies of causes. The ele-
ments of the taxonomy can be further developed, 
described, or linked to management methods to 
create a powerful exploratory and explanatory 
device [1, 17]. Stanton and Salmon applied 
human error taxonomies to driving and revealed 
the psychological mechanisms involved in driv-
ing tasks [18]. This organization of psychological 

mechanisms and their supporting role in task per-
formance allowed investigators to focus upon 
incidents where operators failed to perform a 
given task. 

Finally, it should be noted that taxonomies are 
powerful when data-driven. For example, English 
and Branaghan derived a taxonomy of pilot errors 
based on aviation violations [19]. The taxonomy 
classified violations by the intent on behalf of the 
pilot. The four categories revealed the reasons for 
such violations. The violation categories com-
prised a desire to improve, a desire to cause harm 
or damage, an intent resulting from lethargy or 
laziness, and finally a violation stemming from a 
need for excitement. These four help explain psy-
chological rationale for violations, leading to pos-
sible interventions such as training, awareness on 
behalf of pilots, and process improvement to stem 
boredom and monotony.

2.3. Aviation System Errors

Meaningful associations between errors and con-
tributing factors can be made once appropriate 
categories exist for the data under analysis. 
Hobbs and Williamson demonstrated accident 
models based on contributing factors founded in 
the domain of aviation aircraft maintenance [20]. 
Their approach linked specific errors to underly-
ing contributing factors. The errors that occur in 
maintenance can be truly latent and may manifest 
themselves after much time has passed since the 
maintenance error occurred or only during spe-
cific conditions. In a demonstration of the main-
tenance error decision aid (MEDA) process, 
Rankin, Hibit, Allen, et al. stressed that mainte-
nance errors were not made intentionally by 
maintenance personnel [21]. If errors are not 
intentional, there are likely factors contributing to 
such errors. The MEDA process concentrates less 
on blaming and punishing individuals (the legacy 
method for alleviating maintenance error) and 
more on revealing causes that can be “designed 
out” of the maintenance process. 

Wenner and Drury identified human error pat-
terns in ground incidents [22]. Ground incidents 
are costly to airlines, and usually easily preventa-
ble. The authors found 12 hazard patterns compris-
ing nine major latent failures. The relationships 
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between the latent failures and hazard patterns 
were investigated and classified according to sys-
tems categories using the SHEL model [23] as 
well as by latent failure types. Sixty-six percent 
of latent failures were associated with specific 
hazard patterns, offering an avenue to suggest 
improvements to policies, staffing, or equipment 
to reduce ground incidents.

Predictive models of error can also offer design 
solutions. Stanton, Salmon, Harris, et al. tested a 
method for predicting pilot error based on their 
novel human error template framework [24]. 
Their framework was validated against other 
human error identification approaches with the 
overall goal being to enhance error prediction 
sensitivity. The creation of predictive error mod-
els can shed light on the source of error, and pro-
vide opportunities for error rate reduction through 
training or redesign of hardware. Traditional sta-
tistical analysis can also provide predictive power 
to models of error. McFadden applied logistic 
regression to predict pilot error [25]. The 
expected causes of youth and inexperience were 
significant contributors, but employer type (major 
airline or small regional airline) was also a factor. 
In addition, female pilots appeared to have a 
greater likelihood for committing an error than 
their male counterparts. 

Another avenue of investigating factors con-
tributing to anomalies in flight is that of trust. 
Automation has replaced many pilot hands-on 
and attention-intensive activities. The pilot has 
relationships with that automation just as with 
other pilots, air traffic control, and maintenance 
personnel. There is a multitude of case studies 
outlining over-reliance or complacency with 
automation, citing causes ranging from design 
issues to human error. Johnson, Shea, and Hollo-
way investigated the relationship between pilots 
and global positioning system (GPS) navigation 
equipment [26]. They found a disturbing trend of 
overreliance on these devices, with expectations 
that the GPS system will report faults and that the 
data used by these devices are failsafe. The 
unsafe operation as well as seemingly total trust 
of these systems by pilots has been identified as a 
contributing factor in a range of accidents found 
within the study.

3. OBJECTIVES

One of the challenges of aviation research is that 
evidence and causes of human errors are not 
immediately apparent and are often qualitative in 
nature. The tendency to categorize various under-
lying causes under the general umbrella of human 
error does little to alter the rate of incident and 
accident reduction, as it has no explanatory power 
in determining causes. Furthermore, a greater 
understanding of errors even limited to relation-
ships between error types affords management 
and intervention activities, both passive and 
active. This is because errors are not completely 
random, and are not decoupled from conditions 
related to their occurrence. This property means 
they are classifiable and can have various man-
agement methods [27]. Finally, quantifying the 
highly variable pilot actions is very challenging 
as there are no reference standards generally 
applicable or an all-encompassing approach.

In view of the aforementioned discussion, a 
new approach is required to investigate the com-
plexity of factors contributing to aviation inci-
dents. This paper describes a novel method of 
analyzing a large aviation incident database. The 
main objective of this study was to investigate 
anomalies voluntarily reported using pilots’ data 
in the civil aviation sector in the USA to identify 
factors leading to those anomalies.

4. METHODS AND PROCEDURES

4.1. Methods

Experimental data were obtained from the NASA 
ASRS [2]. This data set contained a range of 
records spanning 30 years of civilian aviation, 
both commercial (airline operations) and general 
aviation (private aircraft). Narrative data as well 
as categorical data were used. Data were first pre-
processed and divided into intelligible groups for 
input into relevant software packages. Factors 
contributing to anomalies were defined using the 
existing taxonomy of factors defined by the 
ASRS database. Similarly, the types of anomalies 
associated with these factors were defined by the 
existing taxonomy within the ASRS database 
structure. 
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The associations between specific factors and 
self-reported anomalies were investigated using 
correspondence analysis and data mining. Corre-
spondence analysis is a descriptive technique that 
reveals associations between categorical data ele-
ments. SPSS r17 was used to perform the corre-
spondence analysis. The text-mining was carried 
out using IBM SPSS Modeler 13: Text Analyt-
ics 1. This software tool analyzes all available text 
in the data and identifies the most often encoun-
tered words, which were defined as “concepts”. 
These concepts were filtered and grouped by 
types. The ASRS database used encoded words, 
which complicated the analysis. For example, 
words such as “hyd” (hydraulics) or “flt cntrls” 
(flight controls) were grouped into an “aircraft 
components” type. These types were used to 
identify and create rules for classifying text 
entries; the container element that contained these 
rules and types was called a “category”. A list of 
ASRS anomaly types and subsets follows:

Air Traffic Controller Issues
Airborne Conflict
Aircraft
Aircraft Equipment
Airspace Violations
Bird/Animal
Controlled Flight Toward/Into Terrain
Clearance
Conflict
Critical
Deviation—Altitude
Deviation—Speed
Deviation—Track/Heading Deviation—

Procedural
Federal Aviation Regulation 
Flight Deck/Cabin/Aircraft Event
Foreign Object Debris
Fuel Issue
Gear Up Landing
Ground Conflict
Ground Event/Encounter
Ground Excursion
Ground Incursion
Ground Strike—Aircraft
Hazardous Material Violation

Illness
In-flight Event/Encounter
Landing Without Clearance
Less Severe
Loss of Aircraft Control
Maintenance
Minimum Equipment List 
Near Midair Collisions 
Passenger Electronic Device
Passenger Misconduct
Person/Animal/Bird
Published Material/Policy
Ramp
Runway
Security
Smoke/Fire/Fumes/Odor
Taxiway
Unsterilized Approach
Vehicle
Visual Flight Rules in Instrument Meteorological 

Conditions (flight into low-visibility 
conditions without proper authorization)

Wake Vortex Encounter
Weather/Turbulence
Weight and Balance

No Specific Anomaly Occurred
Other

4.2. Procedures

The ASRS database identified factors that were 
reported along with each anomaly. A total of 
127 776 text records associated with anomalies 
available as of March 15, 2010, were used. Figures 
1a–1b illustrate a typical ASRS record. The ASRS 
database classifies anomalies based on the types 
and subsets shown in section 4.1. The categorical 
breakdown of these anomalies and their associated 
factors was first conducted. The original ASRS 
database was organized by records, each with 
individual reports that contained a unique identi-
fier code. Each record identifier contained multi-
ple rows of data. The relevant rows of data had to 
be separated from the master ALL_ITEMS file, 
and then recombined in a new file to create addi-
tional columns, ensuring that the ITEM_ID field 

1 http://www-01.ibm.com/software/analytics/spss/products/modeler/downloads.html
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was used as a key to maintain integrity of the 
record. The IBM SPSS Modeler 13 was used for 
this part of the process. 

The ASRS database assessment fields identi-
fied elements as “Contributing Factors/Situa-
tions”, with a special emphasis on “Primary 
Problems”: 

Air Traffic Controller Equipment/Navigation Facility
Aircraft
Airport
Airspace Structure
Chart or Publication
Company Policy
Environment—Nonweather
Equipment/Tooling
Human Factors
Incorrect/Not Installed
Logbook Entry
Manuals
Minimum Equipment List
Procedure
Staffing
Weather
Ambiguous

Once types for selected popular concepts were 
defined, these types were used to build rules to 
automate record classification. As shown in 
Table 1, these rules used logical operators to cre-
ate relationships that selected and classified cer-
tain records. For example, records that contain 
concepts such as “hydraulic failure” or “smoke” 
or “burning smell” likely indicate aircraft issues 
or malfunctions. The selection and classification 
rules were created using keywords and data from 
the HFACS classification system [3], Boeing 
MEDA tool [28], and general pilot knowledge 
keywords elicited from a flight training text [29].

5. RESULTS

5.1.	Self-Reported Anomalies

The IBM SPSS Modeler 13 was used to analyze 
ASRS text records associated with self-reported 
anomalies. Table 2 shows the concept categories 
extracted from these records. The most common 
category was the one containing concepts related 

Figure 1a. Example of typical aviation safety 
reporting system (ASRS) record: part A.

ACN: 868116 (1 of 43)

Time / Day 
Date : 201001 
Local Time Of Day : 0001-0600 

Place 
Locale Reference.ATC Facility : ZZZ.TRACON 
State Reference : US 
Altitude.MSL.Single Value : 10000 

Environment 
Flight Conditions : IMC 
Weather Elements / Visibility : Icing 
Light : Daylight 

Aircraft 
Reference : X 
ATC / Advisory.TRACON : ZZZ 
Aircraft Operator : Air Carrier 
Make Model Name : PC-12 
Crew Size.Number Of Crew : 2 
Flight Plan : IFR 
Mission : Passenger 
Flight Phase : Descent 
Airspace.Class E : ZZZ 

Component 
Aircraft Component : Cockpit Window 
Aircraft Reference : X 
Problem : Failed 

Person : 1 
Reference : 1 
Location Of Person.Aircraft : X 
Location In Aircraft : Flight Deck 
Function.Flight Crew : Pilot Flying 
Function.Flight Crew : Captain 
Qualification.Flight Crew : Commercial 
ASRS Report Number.Accession Number : 868116 
Human Factors : Training / Qualification 
Human Factors : Distraction 
Human Factors : Human-Machine Interface 

Person : 2 
Reference : 2 
Location Of Person.Aircraft : X 
Location In Aircraft : Flight Deck 
Reporter Organization : Air Carrier 
Function.Flight Crew : Pilot Not Flying 
Function.Flight Crew : First Officer 
Qualification.Flight Crew : Commercial 
ASRS Report Number.Accession Number : 868117 
Human Factors : Human-Machine Interface 
Human Factors : Distraction 
Human Factors : Training / Qualification 

Events 
Anomaly.Aircraft Equipment Problem : Critical 
Anomaly.Inflight Event / Encounter : Object 
Detector.Person : Flight Crew 
Were Passengers Involved In Event : N 
When Detected : In-flight 
Result.General : Declared Emergency 
Result.General : Maintenance Action 
Result.General : Police / Security Involved 
Result.Flight Crew : Overcame Equipment Problem 
Result.Aircraft : Aircraft Damaged 

Assessments 
Contributing Factors / Situations : Weather 
Contributing Factors / Situations : Human Factors 
Contributing Factors / Situations : Aircraft 
Primary Problem : Aircraft 
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Figure 1b. Example of typical aviation safety reporting system (ASRS) record: part B.

Narrative: 1 
On descent, leveling off at 10,000 feet there was a loud thunk/crack sound. The left hand  
windscreen was instantly spider webbed with cracks emanating from a central impact point in the  
lower left center, spreading to all sides of the screen. I immediately disconnected the autopilot  
and began to slow and level the aircraft. After resuming manual control of the aircraft, I  
transferred control of the aircraft to the First Officer, using a positive exchange of flight controls.  
Once established, I donned my oxygen mask as a precautionary measure affording me both  
oxygen in the event of depressurization and additional physical protection for my face. I also  
zipped up my jacket and lowered my seat. When I had accomplished these tasks, I resumed 
flying the aircraft by hand, and asked the First Officer to make a PA to the passengers, stating  
that we had sustained damage to the windscreen, there was no need to don their oxygen masks  
and we would be making a normal descent and landing. I then declared an emergency. I  
requested a lower altitude and notified them we would be slowing to a slower airspeed. They  
repeated the restriction of 10,000 Ft and promised lower soon, speed was our discretion. During  
the descent the First Officer and I discussed contingency plans if the screen were to fail (as it was  
continuing to crack), primarily focusing on the fact that he would take control of the aircraft and  
make the landing. We closed the curtain partially to remove the damage from passenger view  
and partially to provide protection to the cabin occupants in the event of total structural failure of  
the glass/plastic. We also notified operations, requesting they advise dispatch and notify  
maintenance. The remainder of the descent was conducted via normal procedures at a reduced  
airspeed. When we were unable to acquire the airport visually, we were climbed to 2200 FT and  
cleared for the ILS. We landed without further incident and taxied into parking, followed by both  
airport operations and fire/rescue as per their procedures (we did not request additional services  
upon landing). Upon closer inspection of the damage on the ground it appears as though the  
outer layer of the windscreen cracked, but no moisture or damage penetrated to the inner layer.  
No loss of pressurization occurred. No passenger injury or damage to persons/property on the  
ground occurred to our knowledge. No residue of a bird, nor additional damage was found during  
a thorough post flight of the aircraft. Due to lack of remains/residue, I suspect ice or foreign  
object rather than a bird. 

Synopsis 
When the outer pane of the Captain’s windshield on their PC-12 shattered the flight crew  
declared an emergency and landed at their destination airport. 
Date : 200902 
Local Time Of Day : 0601-1200 

Place 
Locale Reference.Airport : MIA.Airport 
State Reference : FL 
Relative Position.Distance.Nautical Miles : 0 
Altitude.AGL.Single Value : 0 

Person 
Reference : 1 
Location Of Person : Company 
Reporter Organization : Air Carrier 
Qualification.Flight Attendant : Current 
ASRS Report Number.Accession Number : 823441 

Events 
Anomaly.Other 
Detector.Person : Other Person 
Result.General : None Reported / Taken 

Assessments 
Contributing Factors / Situations : Human Factors 
Contributing Factors / Situations : Environment - Non Weather Related 
Primary Problem : Ambiguous 

Narrative: 1 
In December 2008, I had my uniform pants and a navy blue vest and 2 white shirts to be  
dry-cleaned. In January, when I returned from my vacation to pick-up my uniform, I gave the  
clerk the two pink receipts, but the clerk only returned my shirts and informed me that the pants  
and the vest were returned and discarded the receipts. I advised him that was not possible, but  
just to be sure I returned home to check my closet, my car trunk and any other location that my  
uniform could be, but for the last 15 years that I do business with them my dry-cleaned uniform  
is picked up on the return of my working trips. The owner of the establishment did show me that  
the pants and the vest were retrieved on the same day according to the computer entries that he  
did check out to me, so it’s his word against my word and the thing that is not normal in this  
situation is that to pick up any order without the pink receipt I have to sign a release book. Today  
my pants, tomorrow could be my jacket and soon someone could have an entire uniform...please 
someone could you call this establishment to check this situation? I truly believe that this is not  
an isolated occurrence. 

Synopsis 
Cabin Attendant discovers that uniform pants and vest left at dry cleaners were picked up,  
according to the owner, but not by the Reporter. 
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TABLE 1. Examples of Categories, Classification Rules (CR), Their Types and Descriptors

Category Descriptor, Type CR
Aircraft issues vibration

low oil pressure

light

leak

hydraulic failure, inspection, disconnect, valve

unknown

CR

unknown

CR

CR

Knowledge-based errors

Perceptual errors spatial disorientation, illusion, visual perception 
not heard, misjudge and disoriented

CR

CR

Rule-based errors wrong response, preflight, low fuel

retrospect

exceeded ability

(misdiagnose, wrong, inappropriate, bad) and (emergency, maneuver, 
decision)

(bad, wrong) and (planning, preflight, fuel management go around)

CR

unknown

CR

CR

CR

Skill-based errors stalled, spin

overcompensate, over-speed, wrong direction

inadvertently

forgot, pressed wrong, pushed wrong

did not notice

bad and (technique, control, visual scan, conditions)

omitted and (step, checklist)

CR

CR

CR

CR

CR

CR

CR

Unsafe conditions wake turbulence

unsafe

self-medicating

reaction time, visual limitation

not ready

misinterpreted, misinterpretation

incapable, inaptitude, insufficient aptitude

illness, incapacitated, fatigue, fatigued

excessive and (physical, training)

conflict

attention, complacency, distraction, situational awareness

mental fatigue, get home

(violation, violated) and ( crew rest, rest, sleep, communicate, briefing, 
resources, leadership)

unknown

CR

CR

CR

CR

CR

CR

CR

CR

CR

unknown

CR

nonroutine 
behaviors

Unsafe supervision unqualified

oversight

no training

known problem

hurrying

failed to enforce, unqualified, unauthorized

authorized hazard

CR

CR

CR

CR

CR

CR

CR

Violations VFR into IMC, not current, not qualified, low altitude flight, unauthorized, 
hazardous maneuver, aggressive maneuver

follow and (procedure, directive, instruction, command, briefing) 
exceeded and limits

canyon, low altitude, over-speed

CR

CR

CR

Weather twilight

haze

CR

unknown

Notes. VFR = visual flight rules, IMC = instrument meteorological conditions.
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to unsafe conditions, followed by the rule-based 
errors, then skill-based errors, and knowledge 
based errors. Approximately 22% of the records 
were not categorized by the text mining algo-
rithm, meaning they did not contain any of the 
keywords sought out by the algorithm.

5.2.	Contributing Factors

Tables 3–4 show the total number of entries by 
reported anomalies and contributing factors 
reported for those anomalies. These anomalies 
were selected due to their high occurrence rates; 
anomalies with under 3% occurrence rates were 
not considered in the analysis. Procedural devia-
tions were the most often self-reported anomalies. 
It should be noted that the “other” anomaly type 
was omitted as they were records containing non-
standardized, noncategorized entries, and did not 
contribute any meaningful information to this anal-
ysis. In addition, Table 5 displays the contributing 
factors data, indicating human factors issues as 

being the most often reported contributors to avia-
tion anomalies. It should be noted that the ASRS 
began tracking human factors category data in 
June 2009. This reduced dataset containing human 
factors category data contains 8817 records (see 
Table 5). These records were analyzed separately 
to gain additional insights about these data. The 
identified categories showed that troubleshooting 

TABLE 2. Concept Categories Extracted From 
Aviation Safety Reporting System (ASRS) Text 
Data

Concept No. of Records %
Unsafe conditions 50 625 39.60

Rule-based errors 33 161 26.00

Uncategorized 27 855 21.80

Skill-based errors 25 073 19.60

Weather 21 818 17.10

Knowledge-based errors 19 054 14.90

Aircraft issues 10 110 7.90

Violations 5 287 4.10

Unsafe supervision 271 0.20

Perceptual errors 55 0.01

total 127 766 100

TABLE 3. Anomaly Types and Frequencies 
Selected for Analysis

Anomaly Type Frequency %
Deviation—procedural 56 087 43.9

Aircraft equipment problem 27 359 21.4

Conflict 16 537 12.9

In-flight event/encounter 9 676 7.6

Deviation—altitude 8 434 6.6

Deviation—track/heading 5 294 4.1

Air traffic controller issue 4 384 3.4

total 127 771 100

TABLE 4. Main Factors Associated With 
Reported Anomalies

Factor Type	 Frequency %
Human factors 72 607 56.8

Aircraft 27 674 21.7

Weather 4 818 3.8

Company policy 4 715 3.7

Airport 3 757 2.9

Ambiguous 3 112 2.4

Chart or publication 2 484 1.9

Procedure 2 246 1.8

Environment—nonweather 2 046 1.6

Airspace structure 1 902 1.5

ATC equipment/navigation 
facility

992 0.5

Logbook entry 608 0.5

Incorrect/not installed 370 0.3

Manuals 325 0.3

Staffing 54 <0.01

Equipment/tooling 33 <0.01

Minimum equipment list 28 <0.01

total 127 771 100

Notes. ATC = air traffic controller.

TABLE 5. Classification of Human Factors 
Category of Reported Anomalies

Category Frequency %
Troubleshooting 3 459 39.2

Time pressure 2 487 28.2

Communication breakdown 760 8.6

Situational awareness 730 8.3

Workload 386 4.4

Training/qualification 350 4.0

Other/unknown 207 2.3

Human–machine interface 190 2.2

Confusion 124 1.4

Distraction 70 0.8

Physiological—other 32 0.4

Fatigue 22 0.2

total 8 817 100
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aircraft equipment and time pressure were the 
most common contributors to aircraft anomalies 
for the study period. Surprisingly, fatigue, distrac-
tion, and confusion were not prominently catego-
rized as main contributors to aircraft anomalies. 
Figure 2 shows the frequencies of anomalies in 
the human factors dataset. The most frequent 
anomaly types were procedural deviations and air-
craft equipment problems. In light of these fre-
quencies, the high counts of troubleshooting, and 
time pressure as human factors contributors to 
anomalies appear to follow logically.

5.3.	Relationships Between Contributing 
Factors and Anomalies

Consistent with the methods defined by Clausen 
[30] and applied by Hobbs and Williamson [20], 
correspondence analysis was carried out with 
SPSS r17. Figure 3 shows the results of the cor-
respondence analysis for self-reported anomalies 
and contributing factors. Items appearing close to 
each other denote higher degrees of association 
and imply a relationship. The categories appear-
ing closer together on the plot are more closely 
associated than those further apart. The corre-
spondence plot in Figure 3 shows how closely 
associated individual factors are based on their χ2 

distances. Nonweather related environmental 
issues and weather were most disassociated from 
the other factor types. Procedural factors, human 
factors issues, procedural issues, equipment and 
navigation facility issues, and airspace structure 
were all highly associated. Logbook entry prob-
lems, unclear manuals, issues pertaining master 
equipment list, equipment/tooling problems, and 
installation problems were all closely associated, 
as these are maintenance-related factors. Aircraft 
issues were slightly disassociated from the main-
tenance factors group, but still showed signs of 
association with these factors.

The value of the findings of correspondence 
analysis was not limited to identifying known 
associations between anomalies and factors. The 
findings also described a powerful visualization 
of correlations and associations. Concepts that 
were intuitively related and supported by data 
such as aircraft equipment problems and aircraft 
issues were displayed in close proximity to each 
other, as might have been expected. All of the 
human decision and procedural anomalies and 
factors were also clustered together. Seemingly 
random events beyond the control of the flight 
crew such as weather issues or nonweather envi-
ronmental problems displayed a distant relation-
ship from the other related anomaly and factor 
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Figure 2. Anomaly types associated with the human factors dataset. Notes. ATC = air traffic controller.
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types. Hobbs and Williamson have already used 
this method successfully in linking contributing 
factors to maintenance errors [31].

5.4.	 Skill–Rule–Knowledge (SRK) Taxonomy 
of Self-Reported Anomalies

The goal of data mining was to link latent and 
active factors that may contribute to self-reported 
anomalies. The classification of these factors was 
based on Wiegmann and Shappell’s HFACS 
framework [1]. When certain keywords were 
found in records by the data mining software, 
they were linked to a corresponding category 
(latent or active factor). By applying this directed, 
“supervised” approach, web of associations 
between records was created. The PASW Mod-
eler 13 Text Analytics feature was used to con-
struct document webs examining strengths of 
associations of categories within records. 

Figures 4–6 depict the three human error types 
linked to SRK taxonomy originally defined by 
Rasmussen [32] and then further developed by 
Reason [33], and the associated latent and active 
factors. These are illustrated using the web dia-
grams [34]. The associations indicate that one 
latent or active factor occurs in the presence of 

another. Bolder lines denote stronger associations, 
defined by a number of reports that contained both 
elements. Skill-based error types (Figure 4) were 
associated within anomaly reports along with rule-
based errors as well as unsafe conditions. There 
was a weaker association with weather as well as 
a tenuous association with violations. Rule-based 
error types (Figure 5) were found alongside skill-
based errors to have a high association with unsafe 
conditions. There were weak associations with 
perceptual errors and violations. Rule-based error 
types also shared some association with weather 
conditions and knowledge-based errors in anom-
aly reports. Skill- and rule-based web categories 
were also associated with each other, and less so 
with knowledge-based categories. This is sup-
ported by Reason’s suggestion that skill- and rule-
based errors are similar in that they share a control 
mode that does not exist for knowledge-based 
errors [33]. 

The knowledge-based web (Figure 6) suggests 
that knowledge-based errors occurred when the 
pilot was facing unfamiliar or unknown circum-
stances. These were also strongly associated with 
unsafe conditions, and less so with weather and 
violations. Such association supports feedback 
theories of knowledge-based errors, where the 
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individual encountering the error must employ 
slower, more intensive cognitive processing to 
solve the problem [33]. It is highly likely that 
these errors would be encountered in situations 
where equipment troubleshooting activities were 
also present. Knowledge-based error types 
appeared to be weakly associated with perceptual 
errors and violations, and there were strong asso-
ciations with unsafe conditions types, rule-based 
errors, and skill-based errors. Finally, knowledge-
based error types had some association with 
weather conditions as well.

6. DISCUSSION

The results of this study extend the existing 
knowledge on aviation anomalies, with the 
premise that the conditions surrounding these 
anomalies may also be present when a real inci-
dent occurs. Most contributing factors attributed 
to self-reported aviation anomalies were classi-
fied as human factors. However, it was also 
shown that aircraft hardware contributed to 20% 
the anomalies reported in the sampled ASRS 
data. It is very likely that the troubleshooting 
actions taken by the flight crew were reported as 
human factors. This suggests a need for more 
training of pilots to be more consistent in the cat-

egorization and documentation of flight anoma-
lies allowing the reported data to capture relevant 
casual factors.

The most prevalent category found across all 
self-reported anomalies was the “unsafe condi-
tions” category. Rule-based error categories were 
found more frequently than skill- or knowledge-
based error categories. This contradicts past air-
craft accident studies [3], whether civilian or mil-
itary, that employed the HFACS system and 
found skill-based errors to be most prevalent. 
However, the present study investigated anoma-
lies containing conditions similar to the condi-
tions exhibited in actual incidents. Furthermore, 
perceptual errors were also not identified as fre-
quently in the present study they were in previ-
ously reported studies.

Another interesting difference uncovered by 
the present study is that only 4% of the examined 
ASRS records were identified as having elements 
that would constitute a violation. Wiegmann and 
Shappell found that ~25% of aviation accidents 
contained some sort of violation [3]. It is conceiv-
able that, despite the assurances to pilots that their 
information is confidential and not traceable, 
many pilots are still hesitant to report their own 
violation activities. However, the low occurrence 
of unsafe supervision identified in the present 
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study is consistent with Wiegmann and Shappell 
[3], who also found low percentages of unsafe 
supervision in aviation accidents. Identifying 
unsafe supervision is difficult, as assigning blame 
to an entire organization rather than an individual 
has much larger consequences for aviation-
related operations, especially if serious violations 
or oversights are found. This may indicate a 
weakness in aviation (and likely other) incident 

data collecting processes where human actions 
are often blamed for the mishap, but never cred-
ited for recovery. 

7. CONCLUSIONS

This study limited the data sources to a single 
large repository, i.e., the NASA ASRS. This repos-
itory contained only voluntary reports submitted 
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by pilots flying both private and commercial 
operations. No military data were included in this 
dataset. The encoded nature of the ASRS data-
base, with its many abbreviations, eliminated the 
possibility of a context-link analysis using a tradi-
tional dictionary. The data would have to be 
decoded; this was deemed unfeasible due to the 
number of encoded terms. In addition, much of 
aviation terminology is rife with acronyms, 
abbreviations, and nonstandard technical terms. A 
context analysis, though very powerful, is usually 
limited to full-text sources such as web pages and 
interview or survey data.

To provide the widest breadth of data for this 
study, all available anomaly data were analyzed. 
The data were not partitioned by any means such 
as by date, type of operation, or type of aircraft. It 
is possible and very likely that there are underly-
ing patterns within sections of the data. Anomaly 
types and frequencies for large airline operations, 
e.g., will be different than they are for student 
pilots or recreational flights. These types of 
underlying patterns were not discovered. Future 
studies might investigate whether anomaly types 
and frequencies changed over time, as this was 
deemed beyond the scope of this study. 

Furthermore, to reduce the effect of noise in the 
data only the top seven most frequently occurring 
anomalies were studied. The other anomaly data 
were discarded, even though there could have 
been additional insights or categorizations based 
on these additional anomaly types. The findings 
of this study also corroborate psychological con-
structs of error patterns and their underlying 
mechanisms. Greater understanding of these 
mechanisms bring practical applications of new 
and exciting fields such as cognitive engineering 
and ergonomics contributing to design processes 
and streamlining existing practices. Finally, the 
predictive models can serve to drive new training 
exercises focusing on reducing or eliminating 
those dangerous situations such as those where 
knowledge is scarce and slow feedback process-
ing is required prior to actions being taken. 
Although the possibility of achieving a perfect 
safety record and zero accident rates for the avia-
tion industry is highly unlikely, it is important to 
identify causal factors to reduce the accident rate 

as much as possible to accommodate the drastic 
increase in worldwide air travel traffic. Only 
through collaboration across disciplines and inte-
gration of meaningful findings can powerful, self-
correcting, and sustainable safe practices emerge 
that will guide the aviation field into its exciting 
future.
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