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The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide 
variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. 
In many practical cases related to the assessment of occupational EM exposure, large simulation domains 
are modeled and high space resolution adopted, so that strong memory and central processing unit power 
requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a 
winning approach; alternatively, subgridding techniques are often implemented. However, the simultaneous 
use of subgridding schemes and parallel algorithms is very new. In this paper, an easy-to-implement and 
highly-efficient parallel graded-mesh (GM) FDTD scheme is proposed and applied to human–antenna 
interaction problems, demonstrating its appropriateness in dealing with complex occupational tasks and 
showing its capability to guarantee the advantages of a traditional subgridding technique without affecting 
the parallel FDTD performance. 
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1. INTRODUCTION

In recent years, an extraordinary and continuous 
growth of the communication technologies has 
been observed, with the consequent capillary 
diffusion of many electromagnetic (EM) sources 
on the territory, e.g., radio-base station antennas 
(RBAs), mobile hand-phones, wi-fi access points, 
which cause the frequent interaction between 
humans and EM fields. As a direct consequence, 
the joint interest of public opinion and scientific 
community in the possible human-health hazards 
caused by exposure to EM sources has become 
relevant with the consequent strong necessity to 
rigorously evaluate the EM impact in occupational 
EM exposure. To evaluate such hazards the 
energy absorbed by human tissues exposed to 
EM radiation must be evaluated: to this aim, both 
numerical and experimental approaches are used. 

Several issues of the problem, such as the shape 
of the human body, tissue characteristics, the 

geometry of EM sources, need to be modeled with 
adequate accuracy. For instance, experimental 
approaches based on simplified models of the 
human body cannot be adopted because they 
introduce large approximation errors. Fortunately 
many accurate numerical human body models 
(numerical phantoms) are available in the literature, 
such as the ones proposed in Zubal, Harrell, 
Smith, et al. [1] and Mason, Ziriax, Hurt, et al. [2]. 
Furthermore many EM numerical solvers can be 
used, the finite difference time domain (FDTD) [3] 
method being a rather attractive candidate.

Through FDTD, in fact, both the antennas and 
the human phantoms can be accurately modeled 
by choosing a relatively fine mesh, thus giving a 
rigorous full-wave solution. Parallel computing, 
offering both large memorization space and huge 
computing power, seems to be the best way to 
solve such a challenging problem [4, 5].

 In such a context, the necessity to describe 
complex structures (such as EM sources and 
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human bodies) imposes a fine discretization 
step; if a uniform mesh is adopted, the waste of 
computational resources can become excessive. 
Furthermore, by implementing traditional 
subgridding techniques [6, 7], consisting in 
the use of a fine mesh only in selected specific 
areas, the number of computational grid points 
can be appreciably reduced. However, the 
structure of a standard FDTD algorithm will 
vary strongly, because of the need of a proper 
interpolation/extrapolation process in the fine-
mesh/coarse-mesh interfaces. Consequently, 
the algorithm parallelization becomes not 
trivial and the performance perspective not 
encouraging. Nevertheless, by renouncing some 
of the advantages of the traditional subgridding 
schemes, a good compromise among memory 
saving capability, implementation simplicity 
(also on parallel platforms) and performance, can 
be reached by the proposed graded-mesh (GM) 
technique. 

2. FDTD METHOD

The FDTD method, firstly proposed by Yee 
in 1966 [3], is nowadays one of the most used 
approaches to solve Maxwell’s partial differential 
equations, because of its high versatility. 
Extensive literature is available about this 
topic, so we will just briefly mention here that 
the FDTD algorithm is based on temporal and 
three-dimensional spatial discretization and it 
transforms the time-dependent Maxwell’s curl 
equations into a set of finite-difference relations 
[3, 8, 9]. Also, on the edge of the simulation 
domain, boundary conditions are needed; among 
the several possible choices [9, 10, 11, 12], Mur’s 
absorbing boundary conditions (ABC) are used. 
In fact, even though perfect matched layer (PML) 
ABCs can be more accurate, they are more time-
consuming, and their implementation on parallel 
architectures such as the one here adopted is not 
trivial at all. Anyway, Mur’s ABCs guarantee 
accuracy appropriate for the problem, as it is 
demonstrated in the following sections.

3. PARALLEL FDTD

In this section the basic idea behind the parallel 
implementation of the FDTD algorithm is shortly 
given. On a machine with n processors, the whole 
computation domain is divided into n subdomains 
(with equal volume and shape). In particular, 
the domain is divided along the x dimension, 

mapping in each processor a subregion '
iD  of 

size 
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 for the sake of simplicity 

we suppose Nx to be an integer multiple of n. 
The EM field components are updated in 
each processor in the same instant. When the 
computation updates a field component on the 
border of the domain, some values belonging to 
the border of the adjacent domain are required: to 
avoid communications during the computations, 
each subdomain is surrounded by the border 
cells of the other domain. These border values 
are communicated after the updating phase. See 
Catarinucci, Palazzari and Tarricone for more 
details and for the scheme of the FDTD parallel 
algorithm [4]. 

4. PARALLEL GRADED-MESH (GM) 
FDTD

When using uniform FDTD meshing, the 
characterization of simulated objects with 
an adequate spatial resolution forces the 
adoption of such a resolution over the entire 
simulation domain. Nevertheless, a larger 
spatial discretization step could be applied 
wherever spatial accuracy is not needed. Such an 
observation is the basis of GM FDTD algorithms 
which, allowing the existence of different 
discretization steps in different regions, give a 
certain level of accuracy for the solution using 
less memory and computational power than the 
ones needed to obtain the same accuracy with a 
classic (uniform) FDTD scheme. 

Many authors have already adopted FDTD 
computation schemes with nonuniform step 
with interesting results when traditional 
computer are adopted [6, 7]. To the best of our 
knowledge, instead, the use of variable step 
gridding techniques within a parallel computing 
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scheme is substantially new in literature. This is 
probably because the aforementioned subgridding 
techniques perform the evaluation of the EM field 
components through additional extrapolation and 
interpolation operations, strongly varying the 
FDTD scheme, making parallelization not trivial 
and decreasing the performance. 

Differently, this paper introduces a GM scheme 
(GM-FDTD) which is a natural extension for a 
parallel FDTD implementation. In GM-FDTD the 
discretization is performed in a way so that each 
grid cell has only one adjacent grid cell for each 

of its six faces. Furthermore, along each direction 
the space step can be arbitrarily varied, within the 
limits imposed by the stability criterion, allowing 
very smooth transitions between a fine and a 
coarse mesh region. Taking previous advantages 
into consideration, a price in terms of memory 
has to be paid: to guarantee such properties, in 
fact, the fine-mesh regions cannot be strictly 
limited only to the interested region, but must be 
extended up to the limit of the simulation domain. 
Figure 1 shows such differences. 

Figure 1. Modeling of an electromagnetic source by standard subgridding techniques (top) and by 
the proposed graded-mesh technique (bottom).
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To quantify the cost of the simulation, in terms 
of used domain cells, let us refer to Figure 2 and 
consider the simple case of a cubed domain, 
having linear dimension L, with an object 
inscribed in a cube of size l. The object should 
be discretized at step δ, while the whole domain 
can be discretized with step ∆. The simulation, 
if carried on at the smallest discretization step, 
would require a number of grid cells 

                      Ncells (δ) = (L/δ)3.                       (1)

Neglecting the eventual transition layer between 
regions with different discretization steps, 
conventional subgridding techniques would 
require a number of grid cells

(2)

Figure 2. A three-dimensional mesh example for the variable-mesh finite difference time domain 
method. Notes. L, l—linear dimensions, Δ, δ—steps.
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Referring to Figure 2, it is easy to verify that the 
GM-FDTD method would require a number of 
grid cells

(3)

1
 

'
iD   

 

][ zy
x NNn

N ;  

 
 

3 3
cells ( , ) / / / .N L l l

3

)].

 
3 3

22 2 23 3

cells ( ) ( ) / /

[ /( )] [ /(

N GM FDTD L l l

L l l l L l
 

 
cells cells

cells

( ) ( )
( )

( )
.

N FM N GM
PG GM

N FM
 

 
1 2

1 2
1

( ) ( )
( )

( )

PG GM PG GM
PG GM ,GM

PG GM
.  

3 3 3 3

3 3( ) L lPG CS
L

 

 
3

cells
3

/ ( )
.

/

L N GM FDTD
PG(GM FDTD)

L
 



49PARALLEL GM-FDTD FOR HUMAN–ANTENNA PROBLEMS

JOSE 2009, Vol. 15, No. 1

For the sake of simplicity, in previous 
expressions we assumed ∆ to be an exact divisor 
of L, l and (L – l) and δ to be an exact divisor of 
L and l.

Both computational and memory requirements 
of the FDTD method increase linearly—
according to a first-order approximation—with 
the number of grid cells. Therefore we define the 
performance gain (PG) of the GM scheme with 
respect to the standard, fine meshing (FM), as

(4)

In a similar way, the PG between two different 
GM schemes, VM1 and VM2 is given by

(5)

For the described case of a small cube (linear size 
l, discretized with step δ) inscribed in a larger 
cube (linear size L, discretized with step ∆), the 
PG of conventional subgridding techniques (CS) 
with respect to the uniform meshing with step δ 
is 

(6)

for the same case, the PG of the GM-FDTD 
method with respect to the uniform meshing with 
step δ is

(7)

For instance, if we fix L = 2 m, l = 0.1 m, 
∆ = 0.01 m and δ = 0.002 m, the PG of CS is 
PG(CS) = 0.992, while PG(GM-FDTD) = 0.986; 
in spite of a small decrease in performances 
(~0.6%), the GM-FDTD method allows an easier, 
and more efficient, parallel implementation and 
shows a better numerical behavior, avoiding 
interpolation/extrapolation procedures and 
allowing smooth transitions between regions with 
different discretization steps. 

The parallel implementation is based on the 
same principles of the parallel uniform FDTD, 
i.e., it adopts the same partition of the simulation 
domain, based on a balance of the computation 
among the different processors, and implements 

the same communication pattern between 
adjacent processors. 

To take into account the different cell-size, 
three auxiliary vectors can be used, containing 
the dimension of each cell along x, y and z. Now, 
because of the component location in Yee’s cell 
[8], such values can be directly used wherever 
E-field space derivatives are evaluated; instead, 
when H-field space derivatives are considered, 
the averaged dimension between two adjacent 
cells must be used. The same kind of arrangement 
must be applied in the ABC computation too. 

5. RESULTS

To verify performance and accuracy of parallel 
GM-FDTD, we tested it on some real cases. First, 
we considered the simulation of many different 
kinds of real 900 MHz RBAs and we evaluated 
an electric field pattern at a fixed near-field 
distance (here called near-field radiation pattern, 
NFRP) from the antenna.

After a cubical mesh for the source 
discretization had been chosen, the uniform 
(U) NFRP obtained by using the same space-
step everywhere was evaluated and compared 
with NFRPs at the same physical distance but 
using different GM schemes. The comparison 
among such patterns is a relevant test: it has to 
be observed in fact that, differently from standard 
radiation patterns, which are evaluated in the 
far field region and are expressed in decibels, 
NFRPs are strongly dependent on the observation 
distance, the values being expressed in volts 
per meter with the evaluation performed at a 
generic source-distance. Figure 3, e.g., shows 
the vertical plane U-NFRP using a cubical mesh 
of 6 × 6 × 6 mm3 and a GM-NFRP where space 
step varies from 6 mm in the source region, to 
18 mm elsewhere (according with the previously 
discussed GM rules). The really good agreement 
between them is quite evident.

To quantify differences among various 
NFRPs as well as to investigate the effects of 
the variability of the mesh on the accuracy, in 
the GM scheme cases direct transitions to 12, 
18 and 24 mm have been realized. Furthermore 
the cases of four smoother transitions from 6 to 
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12 mm, using a certain number of 9-mm cells in 
between, have been considered. For each case, 
the averaged errors with respect to the reference 
U-NFRP have been reported in Table 1. Despite 
a strong step-size variation, differences smaller 
than 2% are obtained. For the four studied 6–9–
12 meshes, an error reduction is observed by 
varying the size of the transaction region.

TABLE 1. Uniform Versus Graded Mesh

Kind of Mesh Error (%)
6–12 2.01

6–9–12 (10 cells) 1.70

6–9–12 (20 cells) 1.31

6–9–12 (30 cells) 1.31

6–9–12 (40 cells) 1.32

6–18 1.97

6–24 2.36

Results in Table 2 refer to the speed-up on a 
12-processor parallel computer (SGI Altix 350; 
SGI, USA) by varying the dimension of the 
simulation domain. They refer to one particular 
case of a GM scheme where almost half of 
the used cells have 6-mm steps, whilst 12-mm 
ones are used elsewhere. However, the same 
speed-ups have been obtained for every chosen 
mesh, the computational time for this algorithm 
being dependent only on the minimum space 
step. Hence, differently from other kinds of 
subgridding techniques, performance is not 
affected by the chosen mesh. Moreover, in 
Table 2 a super-linear behavior is apparent in 
some cases; it depends on the well-known cache 
effects.

TABLE 2. Achieved Graded-Mesh Finite 
Difference Time Domain Speed-Up on an SGI 
Altix 350 (SGI, USA) Architecture

Domain
num_proc

1 2 4 8 12
100 × 100 × 100 1 1.93 3.82 8.66 12.17

200 × 200 × 200 1 1.91 3.73 7.91 11.21

250 × 250 × 250 1 1.93 3.81 7.29 11.02

Finally, Figures 4–5 report the electric field 
levels for the occupational problem of a worker’s 
exposure to the field emitted by RBAs, showing 
the appropriateness of such a method to deal with 
large EM problems. In both cases, a domain of 
256 × 256 × 256 cells has been modeled, using a 
uniform mesh with 4-mm steps for the simulation 
of Figure 4, and a GM scheme with 4-mm steps 
in the source region and in the body region and 
12-mm ones elsewhere for the case of Figure 5. 

The advantage in terms of maximum reachable 
human–antenna distance is apparent: referring to 
the case of Figure 5, the same human–antenna 
distance using a cubical uniform mesh, could be 
studied by modeling a domain of almost 450 × 
450 × 450 cells, with a memory requirement and 
a computational time which would be 5 times 
higher. 

Figure 3. Uniform near-field radiation pattern 
(U-NFRP) versus 6–18 mm graded-mesh near-
field radiation pattern (GM-NFRP).
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Figure 4. Human–antenna interaction problem by using a 4 mm3 uniform mesh. The electric field 
level is shown by considering a radiated power of 32 W and a working frequency of 900 MHz.

Figure 5. Human–antenna interaction problem by using a 4–12 mm graded-mesh scheme. The shown 
electric field level has been computed in the same working condition as Figure 4.
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6. CONCLUSIONS

We presented the parallel implementation of 
an algorithm devoted to the simulation of large 
EM problems which is particularly useful 
for assessing occupational exposures to EM 
fields. In such an area, a realistic simulation 
domain including at least antennas and human 
phantoms, should be accurately modeled. The 
possible scenarios (different human postures, 
large antennas, complicated environment, etc.) 
can result in very complex and large simulation 
domains, difficult to be studied with standard 
algorithms and traditional numerical platforms if 
an adequate accuracy is required. The proposed 
algorithm is based on the FDTD method 
including a GM feature. After a brief review of 
the FDTD algorithm, we described its parallel 
implementation, and discussed the proposed 
GM peculiarities. The relevant topic of the 
interaction between RBAs and humans has been 
studied and the advantages in terms of memory-
saving have been estimated, demonstrating the 
appropriateness of the proposed tool to deal with 
difficult EM problems. 
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