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Classical ‘‘slip and fall’’ analysis was reformulated in this paper to account for
the stochastic nature of friction. As it turned out, the new theory, arising from
this analysis, was a precise statement of the distribution function for the
smallest value among n independent observations. This made it possible to
invoke an important result from the asymptotic theory of extreme order
statistics that reduced the theory to a simple and elegant relationship among
the probability of slipping, the critical friction criterion, the distance traveled
by the walker, and the average, spread and asymmetry of the distribution of
friction coefficients. The new theory reveals that short walks lead to fewer
falls; low friction floors are sometimes better than high friction ones.

slip and fall extreme value statistics human locomotion friction
slipperiness Weibull reliability

1. INTRODUCTION

The 1974 edition of Accident Facts, published by the National Safety
Council, indicated that in the USA 8,000,000 falls occurred in the home
resulting in 9,600 deaths and 1,600,000 disabling injuries1. In 1999, falling
in the home once again killed 9,600; only motor vehicles caused more
deaths than falling. The total number of deaths attributed to falls was 17,100
and the trend over the past 15 years is unfortunately increasing. Because of
the seriousness of the ‘‘slip and fall’’ problem a great many technologists
have focused on its elusive solution. Concentrating only on slips, there is

Correspondence and requests for offprints should be sent to Ralph Lipsey Barnett, 5950
W. Touhy Avenue, Niles, IL 60714, USA. E-mail:<cheryl@triodyne.com>.

1 Death from accident is death that occurs within one year of the accident. Disabling
injury is an injury causing permanent disability or any degree of temporary total disability.
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general agreement that they may be abated by controlling the friction
coefficients of floors.

Human locomotion involves acceleration during start-up, slowdown,
steady movement, and maneuvers. These accelerations are associated with
tangential forces transferred from a walker’s footwear to the walking
surface. To accomplish desired ambulation the tangential forces must be
resisted by ground reaction forces. On uncontaminated dry floors, ground
reaction forces are developed through friction.

In 1495 Leonardo da Vinci deduced the two basic laws of friction:

1. The friction force is dependent on the force pressing bodies together;
2. The friction force is independent of the apparent area of contact.

He found that the friction force was a fraction of the normal force, that is,

F = µN,

where F—friction force (tangential), µ—coefficient of friction (constant),
N—normal component of the contact force between the contacting bodies.

Leonard Euler, in 1725, established that the coefficient of friction was
different for static conditions, µs, and for dynamic or kinetic conditions, µk.
He found that usually

µs > µk.

The static coefficient of friction is the ratio of horizontal force to normal
force required to initiate sliding between two solid bodies. In 1875, Charles
A. Coulomb discovered that kinetic friction, µk, is nearly independent of the
sliding speed; this is often referred to as the third law of friction. These
historical facts have been carefully chronicled by Duncan Dowson (1979) in
his History of Tribology.

The required resistance for ambulation is measured with a force-plate.
This is an instrumented walking surface that records the time history of
contact forces impressed by walking candidates during various locomotion
exercises, for example, straight walking or turning. Typical time histories
are displayed in Figure 1, which has been generated from two sources by
Grönqvist, Roine, Jarvinen, and Korhonen (1989). The top of the figure
shows gait phases developed by Murray (1967) in normal level walking for
one step with the right foot. The force-time diagrams in Figure 1 were
obtained by Perkins (1978) using a three-axis force-plate manufactured by
Kistler Instruments A.G. of Switzerland (Type 9261 A). Curves are shown
for the horizontal force component H, the vertical force component V, and
for their ratio H/V. The H/V ratio allows the limit of safety to be



STATISTICAL SLIP THEORY 137

determined. The horizontal component of force applied by the foot to the
floor is opposed by the friction between the two. At the point of slipping
H = µV. Thus, if the ratio H/V is not as great as µ, slipping will not occur.
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right foot in stance phase
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foot in swing phase

Figure 1. Contact forces during straight walking (after Grönqvist, Roine, Jarvinen, & Korho-
nen, 1989). Notes. Gait phases in normal level walking with typical horizontal force (H), vertical force
(V), and their ratio (H/V) for one step (right foot). Critical from the viewpoint of slipping are the heel
contact (especially peaks 3 and 4) and toe-off (peaks 5 and 6). N—Newtons.



138 R.L. BARNETT

The maximum value of H/V attained in a step will give the value below
which µ, must not drop if the floor is to be safe.

In a comprehensive study by Harper, Warlow, and Clarke (1961),
maximum values of H/V were determined on a level surface for men and
women during straight walks and turns. Their force-plate measurements of
H/V, which are summarized in Table 1, represent 87 sets of data for men
and 37 sets for women. Using statistical inference, Harper et al. estimated the
H/V value at the 0.9999 percentile level for straight walking, H/V = 0.36.
This implies that only one in a million men will exceed this value. If there
were such a thing as a uniform friction floor where the floor-footwear
friction coefficient was everywhere constant, at say µ = 0.36, then only one
man in a million would slip on this surface. Unfortunately, the problem of
slipping is more complicated because friction coefficients between material
couples are stochastic. This paper deals with this fact.

TABLE 1. Maximum H/V (after Harper, Warlow, & Clarke, 1961)

Turning

Straight Walking Left Foot Right Foot

Statistical Properties Men Women Men Women Men Women

Mean (50 percentile) 0.17 0.16 0.19 0.17 0.22 0.19
Standard deviation 0.04 0.03 0.04 0.02 0.04 0.02
0.9999 percentile 0.36 — 0.40 — 0.36 —

2. CRITICAL FRICTION CRITERION

The classical formulation of the slip and fall problem may be stated as no slip
will occur if the coefficient of friction µ between the walking surface and the
footwear contact area exceeds some critical friction criterion, µc, that is,

µ > µc ... no slip. (1)

Equation 1 is deceptively simple. Almost every decision regarding the
application of this inequality is surrounded by uncertainty; consider, in turn,
the left and right sides:

Coefficient of Friction (Footwear/Walking Surface): µ

1. Should µ be taken as static or dynamic? For decades a transatlantic
controversy has endured over this question; U.S. investigators have
embraced the static coefficient of friction whereas the UK and European
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experts have maintained that the kinetic friction coefficient is more
significant.

2. Should a floor’s slipperiness be judged under dry, wet, or oily condi-
tions? To measure µ under wet or oily conditions a testing device should
be selected that simultaneously applies the horizontal and vertical force
components at the floor/footwear interface. This avoids erroneously high
slip resistance values due to ‘‘sticktion;’’ this term was coined to express
the adherence or build-up of suction at the test interface when the
vertical force V is applied before H.

3. What footwear material should be used to test a floor; indeed, should an
entire shoe be tested? Consider the following ASTM (American Society
for Testing and Materials) standards:

• ASTM C1028-89 (ASTM, 1989a) adopts Neolite,
• ASTM D2047-88 (ASTM, 1988a) specifies leather conforming to

Federal Specification KK-L-165C. Also a standard rubber may be used
if it satisfies ASTM D1630 (ASTM, 1983a),

• ASTM F609-89 (ASTM, 1989b) allows for actual footwear samples.

4. What slip-resistance measurement device should be used? There are as
many as 40 kinds of tribometry appliances that have been developed in
the past 70 years for laboratory and field applications under wet or dry
conditions (Adler & Pierman, 1979; ASTM, 1983b, 1983c, 1983d, 1988b;
Balance, Morgan, & Senior, 1985; Brungraber, 1976, 1977; Irvine, 1976;
Jung & Schenk, 1990; Majcherczyk, 1977; Pfauth & Miller, 1976;
Redfern & Bidanda, 1994; Reed & Mahon, 1977). The readings obtained
among these devices are not consistent and they are not accurate when
run head to head with force-plates. Most machines, on the other hand,
show repeatability; both static and dynamic coefficients of friction lie
within 10% of the mean (Andres & Chaffin, 1985).

5. How is the friction coefficient reported? When a particular test is
executed, the result is a value of µs or µk. When the slipperiness of
a floor is measured using a testing protocol, the average coefficient of
friction is recorded, that is, µs or µk. The following test protocols are
examples:
• ASTM C1028-89 (ASTM, 1989a), Horizontal Dynamometer Pull-Meter

Method; 12 readings are averaged from four pulls perpendicular to the
previous pull on each of three surface areas or three test specimens.

• ASTM D2047-88 (ASTM, 1988a), James Machine; requires that the
arithmetic average of 12 static coefficients of friction obtained from
three panels be reported.
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• ASTM Proposed Test method for ‘‘Dynamic Coefficient of Friction of
Polish-Coated Floor Surfaces as Measured by the NBS-Sigler Pendu-
lum Impact Tester (ASTM, 1983c); requires the arithmetic average of
24 readings of the dynamic coefficient of friction obtained on three
specimens.

• ASTM Proposed Test Method for Static and Dynamic Coefficient of
Friction of Polish-Coated Floor Surfaces as Measured by the Topaka
Slip Tester (ASTM, 1983d); requires the arithmetic average of nine
readings of static or dynamic friction coefficients taken from three
specimens.

Classic floor slipperiness is always described as the average of multiple
friction coefficient readings, that is, µs or µk. For example, a high friction
floor has a high average friction coefficient. In the present paper, friction
coefficients are not only characterized by their average; but by their
scatter and asymmetry as well.

6. Measuring friction:

• Every testing device has a protocol specified by the manufacturer or
by associated standards such as those promulgated by ASTM or UL
(Underwriters Laboratory).

• Seemingly minor things can have a significant effect on slipmeter
readings; temperature, humidity, test foot material, test foot preparation,
floor material, floor preparation, and the amount of time the two
materials are in contact prior to attempting a test run. The temperature
and humidity must be reported with the average friction coefficient for
a number of different testing machines when ASTM procedures are
adopted, for example, ASTM C1028-89 (ASTM, 1989a) and ASTM
D2047-88 (ASTM, 1988a).

Critical Friction Coefficient: µc

1. The critical friction criterion µc is often established by legislative fiat.
For example,
• Australian-New Zealand Standard (Standards Australia and Standards

New Zealand, 1993)
Wet or Dry Horizontal Surfaces: When tested with the Pendulum Friction
Tester (Wet) or the Floor Friction Tester (Dry) a pedestrian surface shall
have a mean coefficient of friction of not less than 0.4 and no specimen
in a sample (usually five specimens) shall be less than 0.35.
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• Americans with Disabilities Act (ADA; Department of Justice, 2000)
Accessible Routes: µc ≥ µs = 0.6
Ramps: µc ≥ µs = 0.8

• Occupational Safety and Health Administration (OSHA, 2000):
Ground and Floor Surfaces: µc ≥ µs = 0.5.

It should be noted that no methods for determining the friction coeffi-
cients are specified by the ADA or OSHA.

2. For any particular tribometry device µ can be correlated with actual slipping
experience and from these statistical data an acceptable µc may be chosen.

3. A minimum functional µc may be derived from locomotion analysis
involving force-plates. A value judgement must be made regarding an
acceptable number of slips; from this a certain percentile H/V may be
selected as µc.

4. A safety factor may be applied to the average H/V obtained from
force-plate studies to account for, among other things, variations in the
coefficient of friction measurement. The resulting µc is sort of a hybrid
of science driven by an experience factor.

5. The critical friction µc criterion may be arbitrarily taken as µc = µs = 0.5.
This ubiquitous static friction coefficient enjoys a rich history dating
back to 1945 and the James Machine of the Underwriters Laboratories
(‘‘Bucknell University F-13 workshop,’’ 1992).

Given these various methods of determining µ and establishing µc,
one can hardly take the position that falling below µc necessarily leads to
a slip or a slip and fall. Nevertheless, for shorthand purposes we shall
define a slip as a violation of Equation 1.

3. REFORMULATION OF THE SLIP AND FALL PROBLEM

For a specific footwear material we may use one of the available tribometry
machines to measure the coefficient of friction at various locations on
a homogenous floor. The resulting set of data is called a statistical sample,
which, in the usual way, may be presented as a histogram or as a cumulative
distribution function such as that shown in Figure 2.

The term F(µ) is the probability that a random value of µ, M, is less than
or equal to µ : F(µ) = P(M ≤ µ). Physically we know that µ cannot be less than
zero; for a particular combination of materials it may never be less than µz,
which we shall call the zero probability friction. The right hand side of the
curve is shown to approach the value F(µ) = 1 asymptotically. As a practical
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Figure 2. Cumulative distribution function: Coefficient of friction.

matter µ seldom exceeds unity; however, there is no theoretical reason
precluding very large values. The development of friction resistance is
related to the shape of the interface asperities. One can visualize intermesh-
ing rigid square-tooth gear racks that produce sliding resistance without the
imposition of normal forces. Macroscopically, child resistant bottle caps
often use such a design for the clockwise or tightening direction.

Based on Equation 1, slipping proceeds whenever µ ≤ µc. Consider
taking a walk of n steps on a surface whose friction is characterized by the
distribution function F(µ). During the first step the probability of slipping is
F(µc) as indicated in Figure 2. On the other hand, the probability of surviving
or not slipping is [1 – F(µc)]. The survival of the second step is completely
independent of the first step and has the same survival probability,
[1 – F(µc)]. Consequently, the probability of simultaneous survival of the
first and second steps is the product [1 – F(µc)] [1 – F(µc)]. If we designate
Fw(µc) as the probability of slipping during a walk of n steps, [1 – Fw(µc)] is
the probability of surviving the walk. This is equal to the probability of
simultaneously surviving n steps, [1 – F(µc)]n. Thus,

1 – Fw(µc) = [1 – F(µc)]n (2)
or

Fw(µc) = 1 − [1 – F(µc)]n. (3)

With reference to the Statistics of Extremes (Gumbel, 1958), Equation 3
turns out to be the definition of the exact distribution of the smallest value
among n independent observations. We can now take advantage of some 85
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years of mathematical inquiry in the field of extreme value statistics. In
particular, the precise form of F(µc) may be obtained from the asymptotic
theory of extreme order statistics and the observations that the friction
coefficients are independent and identically distributed; they are continuously
distributed and achieve a zero probability at µ = 0 or µ = µz, and a walk of
n steps follows the ‘‘weakest-link principle’’ in the sense that its resistance
to slip cannot exceed the lowest friction coefficient encountered. F(µc) is
a Weibull Distribution; that is,
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where µz, µo, and m are statistical parameters. This result was first
established in 1928 by Fisher and Tippett (1928); it is extensively explored
in a remarkable book by Galambos (1978).

Substitution of Equation 4 into Equation 3 yields the principal finding of
this study,
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The Weibull form is recaptured. This simple, elegant formula provides
a relationship among the probability of slipping (or falling below µc), the
length of the walk (n steps), the critical friction criterion µc and three
statistical parameters that characterize the floor/footwear set. The three
Weibull constants describe the entire distribution of friction coefficients
including their average, their spread, and their asymmetry.

4. CHARACTERISTICS OF THE REFORMULATION

Because the implications of Equation 5 are so far-reaching and differ so
radically from the classic slip and fall formulation, it seems appropriate to
explore some of the important characteristics of this new theory.
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4.1. Characterization—Floor/Footwear Set

In the classic slip and fall formulation, a floor/footwear set is characterized by
establishing its average friction coefficient µ through testing. In the new
formulation, the distribution of friction coefficients is described by the Weibull
distribution, or equivalently, by its three parameters µz, µo, and m. These
parameters may be found by equating the first three moments of the Weibull
distribution to the associated moments of the sample data obtained by testing.

The first moment of the Weibull distribution about the origin takes the
form
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where Γ is the gamma function. This represents a central measure of the
distribution and displays the relationship among the sample mean µ and the
three Weibull parameters. This provides only one equation for three unknowns.
The other two parameters may be obtained by computing the sample
variance and skewness and relating them to their corresponding expressions
using the central distribution moments, (about µ); thus,
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where m3 is the third central moment and m3/s3 is the skewness. Using
Equations 6, 7, and 8 to solve for the Weibull parameters is a technique
known as the method of moments; its usefulness is facilitated by a set of
curves described by Gregory and Spruill (1962).

The reader should note that scatter is measured by the related concepts
of variance, standard deviation, or coefficient of variation s/µ. The skewness
is used as a measure of asymmetry. Frequency distributions such as f(µ)
that show tails biased to the left, have negative skewness.
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To illustrate the reformulation theory, a set of static friction coefficients
were measured under laboratory conditions using a Horizontal Pull Slipmeter.
Following the test protocol specified by ASTM F609-79 (ASTM, 1989b),
400 coefficients of friction were obtained between 100 new one-foot square
asphalt tiles and three 0.5-inch (1.27-cm) diameter leather specimens under
dry conditions. The sample data is presented as a histogram in Figure 3 and
as a cumulative distribution function F(µ) in Figure 4. A continuous Weibull
probability density curve f(µ) was fitted to the data in the histogram using
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Figure 3. Histogram: Coefficient of friction.
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Figure 4. Cumulative distribution function: Coefficients of friction.
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the parameters µz = 0.31, µo = 0.40, and m = 4.75. In Example 1, this data
is used to illustrate the new slip theory in a thousand step walk of the type
experienced in an airline terminal. For no particular reason the critical
friction coefficient was taken as µc = 0.36, which will preclude slipping for
all but one man in a million.

Example 1

Weibull Parameters (from data):
µz = 0.31
m = 4.75
µo = 0.40

Length of walk:
n = 1000 ... 1000 step walk

Critical Friction Criterion:
µc = 0.36

Mean (Average) Friction Coefficient (µ):
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Standard Deviation (s):

s = 8.7882 × 10–2

Coefficient of Variation (s/µ):

s/µ = 8.7882 × 10–2 ÷ (0.676)
= 13.00%
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In conventional parlance, a tile floor of this composition will have
a friction coefficient of 0.676 (actually, µ = 0.676), which is a high friction
walking surface. Nevertheless, 5% of the walks will fail in the sense that
a friction coefficient will be encountered that is less than 0.36.

4.2. Floor Slipperiness Ranking

The slipperiness of floors is conventionally ranked by their average coeffi-
cients of friction. This practice is rooted in the belief that ‘‘bigger is better,’’
that is, a higher friction floor leads to less slipping than a lower friction
one. To demonstrate that this is not necessarily true, two additional examples
of a thousand step walk are treated using the same critical friction criterion,
µc = 0.36, and the same zero probability friction, µz = 0.31, adopted in
Example 1.
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Example 2 studies the properties of a floor/footwear couple with an
average friction coefficient µ = 0.5, which is lower than the corresponding
floor in Example 1 (µ = 0.676). Selecting an arbitrary value for the Weibull
power parameter m = 8, the remaining parameter µo is calculated from
Equation 6.

Example 2

Weibull Parameters:
µz = 0.31 (determined from data)
m = 8 (assumed)
µo ... (to be calculated)

Length of Walk:
n = 1000 steps

Critical Friction Criterion:
µc = 0.36

Mean Friction Coefficient:
µ = 0.5 (imposed)

Parameter, µo:

0.20175
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31.05.0

=

from Equation 6

Variance (s2):
s2 = 7.9465 × 10–4

Standard Deviation (s):
s = 2.8190 × 10–2

Coefficient of Variation (s/µ):

s/µ = 5.64%
Skewness (m3/s3):

m3/s3 = –1225.2386
Probability of slipping (or falling below µc), Fw(µc):
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We observe that the high friction floor/footwear set (µ = 0.676) pres-
ented in Example 1 gives rise to a slip probability Fw(0.36) = 5% whereas
the lower friction floor/footwear set (µ = 0.5) provides a smaller slip
probability Fw(0.36) = 1.41. It should be noted that the variance associated
with the high friction set (s2 = 7.7232 × 10–3) is an order of magnitude
larger than the lower friction set (s2 = 7.9465 × 10–4).

Comparing Examples 1 and 2 shows that here the scatter in the µ
distribution is more important than the average µ. ‘‘Expressed in terms of
floods, the statement is very simple: If a small stream has a larger
dispersion of its discharges than a big river, it may cause larger floods than
the big river’’ (Gumbel, 1954). These two examples not only force us to
abandon our cherished classical notion that high friction is always better
than low; but it teaches that floor slipperiness cannot be ranked according to
average coefficients of friction.

Recall that the floor/footwear couple addressed in Example 1 used data
obtained from clean dry asphalt tiles and leather specimens. Example 2
represents a study of an assumed floor/footwear couple with an average friction
coefficient of µ = 0.5 and a coefficient of variation of 5.64%. Real world
studies reported by Andres and Chaffin (1985) indicate that these friction
characteristics are typical of those obtained between a painted cement floor in
a large commercial laundry and rubber soled shoes and between a waxed
cement floor in an automotive assembly plant and leather soled shoes.

In Examples 1 and 2, high average friction gave way to low scatter.
This is not a general result as the following example will illustrate. The
average friction in Example 3 is the same as that used in Example 2,
µ = 0.5. The Weibull power parameter is taken as m = 6; Example 2 used
m = 8. Once again, µo must be calculated using Equation 6.

Example 3

Weibull Parameters:
µz = 0.31 (determined from data)
m = 6 (assumed)
µo ... (to be calculated)
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Length of Walk:
n = 1000 steps

Critical Friction Criterion:
µc = 0.36

Mean Friction Coefficient:
µ = 0.5 (imposed)

Parameter, µo:

0.2048
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from Equation 6

Weibull parameter

Variance (s2):
s2 = 1.3652 × 10–3

Standard Deviation (s):
s = 3.6949 × 10–2

Coefficient of Variation (s/µ):

s/µ = 7.39%
Skewness (m3/s3):

m3/s3 = –550.1373
Probability of slipping (or falling below µc), Fw(µc):
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Example 3 shows a greater probability of slipping than Example 1 in
spite of lower variability in the distribution of µ (coefficient of variation of
7.39% compared to 13.00%). Thus, a set with low average friction may
exhibit a higher or lower probability of slipping compared to a set with
higher average friction. The proper way to compare floor/footwear sets is to
compare their Fw(µc)’s using Equation 5.
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Comparing Examples 2 and 3 whose floor/footwear sets have equal friction,
µ = 0.5, we find that all other things being equal the lower scatter in Example
2 (coefficient of variation 5.64% compared to 7.39% in Example 3) leads to
a smaller slipping probability. This result cannot be reached with conventional
slip theory that would judge both floor/footwear couples to be equivalent. Once
again, ranking by µ is found to be impossible. Another provocative observation
involves the application of floor treatments. A floor preparation that would not
effect the average friction coefficient, may exert an inordinate influence on
floor slipperiness by causing changes in the scatter and asymmetry of the
friction coefficient distribution, f(µ). The effectiveness of floor treatments
cannot be studied using conventional slip theory.

The reformulated theory of slip profoundly challenges existing tribometry
appliances and the formulation of testing protocols. For example, the
number of measurements required to estimate the mean friction coefficient
of a floor/footwear couple is very small compared to the sample size
required to reliably estimate the standard deviation and skewness. Given the
poor track record of slipmeters for determining accurate estimates of the
mean friction at high confidence levels, what chance do they have of
reliably reflecting the variability and asymmetry of f(µ)? The profound
effect of these properties on slip probability is clearly established by the
calculations associated with Examples 1, 2, and 3.

4.3. Length of Walk

The classic formulation of slip and fall is independent of the number of
steps taken by the walker. In the new formulation, the probability of slipping
may depend rather sensitively on the number of steps n. Consider the
floor/footwear set described in Example 1. Taking values of µc as 0.33,
0.36, and 0.6, the probability of slipping is computed for various values of
n as recorded in Table 2.

TABLE 2. Length of Walk (n Steps) Versus Probability of Slipping

n Fw (0.33) Fw (0.36) Fw (0.6)

0 0 0 0
10 6.6085 × 10–6 5.1311 × 10–4 0.8859
100 6.6084 × 10–5 5.1193 × 10–3 1.0000
1000 6.6064 × 10–4 5.0029 × 10–2 1.0000
10,000 6.5868 × 10–3 4.0145 × 10–1 1.0000

Notes. Weibull parameters: µz = 0,31, m = 4.75, µo = 0.4
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It is clear from this table that a floor cannot be characterized without
including the number of anticipated steps n. Indeed, each time n increases
by an order of magnitude, the corresponding slip probabilities Fw(µc = 0.33)
and Fw(µc = 0.36) also increase by an order of magnitude. Furthermore, for
long walks one finds that it is virtually certain that a friction coefficient will
be encountered that is lower than µc = 0.6. Keep in mind that this popular
criterion, recommended by the Americans With Disabilities Act, already
contains a safety factor. As a final observation, the slip probability is also
very sensitive to changes in the critical friction criterion; increasing it by
10% from µc = 0.33 to µc = 0.36 increases the probability of slip by two
orders of magnitude.

4.4. Infinite Walk

An examination of Equation 5 with a view toward taking the limit of Fw as
n approaches infinity, indicates that whenever µc > µz the quantity in
parenthesis will be positive and the exponential term will always be driven
to zero; thus, Fw → 1 and slipping is certain to occur. To survive an infinite
walk, µc must be less than or equal to µz which gives Fw = 0. It is unlikely
that µc will ever equal µz given that µz is derived from friction data and µc

has several definitions. Obviously, in an infinite walk one will encounter the
lowest possible friction coefficient; if it is below the critical friction
criterion slipping must occur by definition.

4.5. Selection of the Critical Friction Criterion

Rewriting Equation 5, an explicit expression for µc becomes,

( ) m

n

Fw

ozc

1

1ln




 −−

+= µµµ . (9)

For a given length of walk and floor/footwear set everything in Equation 9
is known except the term (1 – Fw), which is the subjective reliability that
might be demanded by a value system.
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4.6. Walking Profiles

Are several short walks more critical than a single equidistant long walk?
Consider, for example, that k people take short walks of n steps each; the
total number of steps is kn. The probability of slipping during a single short
walk is given by Equation 5, that is, 1 – e–nθ where θ ≡ [(µc – µz)/µo]m. As
the short walks are all independent of each other, the total probability of
slipping during the k walks is the sum of the k probabilities of slipping;
k(1 – e–nθ). Now, consider a single equidistant walk of kn steps. The
probability of slipping is 1 – e–knθ. The long walk may be treated as a series
of walks; the associated slipping probabilities are not mutually exclusive as
the first slip terminates the successful completion of the walk. Using the
addition rule for arbitrary events the slipping probability for a 2n walk may
be written for two n walks; thus,

(1 – e–2nθ) = (1 – e–nθ) + (1 – e–nθ) – (1 – e–nθ)(1 – e–nθ).

Generalizing this result leads to the following identity:

(1 – e–knθ) ≡ [1 – e–(k–1)nθ] + (1 – e–nθ) – (1 – e–nθ)[1 – e–(k–1)nθ]. (10)

Evaluating and manipulating this equation for k’s ranging from 2 to k leads
to another identity; to wit,

(1 – e–knθ) ≡ k(1 – e–nθ) – (1 – e–nθ)
k – 1

∑
z = 1

(1 – e–znθ). (11)

Noting that all of the quantities in parentheses are non-negative probabi-
lities, it is clear from Equation 11 that the slipping probability of a long
walk, 1 – e–knθ, is always less than that of k short walks, k(1 – e–nθ). This
implies that the number of steps n cannot be used to characterize a floor;
the entire walking profile must be evaluated.

4.7. Central Tendency

Because the distribution of friction coefficients is skewed, the use of the
mean to characterize a floor/footwear set has no physical significance. The
mode, on the other hand, is the most likely value of µ that will be
encountered. It may be expressed in terms of the Weibull parameters as
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nm
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ozmode

1






 −+= µµµ

m
1

. (12)

Another candidate for central tendency that retains its meaning for
skewed distributions is the median: 50% of the friction coefficients are
lower or higher than this value. Using Equation 9 with Fw = 0.5 gives

n
ozmedian

2ln





+= µµµ

m
1

. (13)

The expressions given in Equations 12 and 13 apply to the general
Weibull form represented by Equation 5. When they are used to characterize
the data used in Example 1, n is taken as unity; thus,

µmean = 0.676,
µmode = 0.691,
µmedian = 0.680.

5. CONCLUSIONS

1. Conventional slip theory is formulated as a simple linear inequality
relating the average friction coefficient and the critical friction criterion.
It does not account for the stochastic nature of friction in either its
characterization of the distribution of friction coefficients or in its
applications in the area of human locomotion. By contrast, the new
theory of slip and fall, Equation 5, provides a closed form and easily
manipulated relationship among the probability of slipping, the critical
friction criterion, the distance traveled by the walker, the average friction
coefficient, and both the spread and asymmetry of the bell shaped
friction distribution curve.

2. The average coefficient of friction for a floor/footwear set provides no
information about the slipperiness of a floor. For the same average
friction coefficient, the probability of slipping (or dropping below
a given critical friction criterion) can vary widely as different values are
attained for the standard deviation and skewness of f(µ) or for different
walk lengths (n). In contrast with conventional slip theory, the new
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formulation can be used to evaluate a floor, or rank various floor
construction materials, or study the slipperiness of candidate floor
preparations.

3. To evaluate the slip resistance [Fw(µc)] of a floor system, the actual duty
profiles must be established, for example, the number of walks of n1 steps,
n2 steps, ... , ni steps, that will be undertaken in a given time period.

4. To characterize floor slipperiness for a particular footwear material,
a protocol must be available that can estimate the mean, standard
deviation, and skewness of a friction coefficient sample with accuracy
and confidence. This will require tribometers that can efficiently measure
large numbers of friction coefficients. Furthermore, the machines must
not effect a floor/footwear measurement by repeated trial reading at
a single location. In addition, a slipmeter must suppress its own variability
and that of its operator.

5. One of the most important findings that flows from the extreme value
formulation of the slip problem is that friction data [f(µ)] must follow the
Weibull distribution.

6. The most important physical feature of the new formulation of the slip
problem is the explicit recognition that slip depends on the smallest
friction coefficient encountered during ambulation and not on the average
friction µ used in conventional theory.

7. The questions ‘‘how many walkers slip?’’ or ‘‘how many walkers fall?’’
are almost never the foci of an inquiry in the USA. Slip and fall analysis
is almost entirely of the go/no go type, that is, the determination of
compliance or non-compliance of the average friction coefficient with
codes and standards arising from rule-making activities of consensus,
statutory, or regulatory value systems. However these value systems
arrive at a critical friction criterion µc, the new slip theory given by
Equation 5 describes how often µ will drop below µc during a walking
scenario. Fw(µc) never predicts the actual probability of slipping.

If µc is set equal to, say, the 50 percentile value of H/V for males during
a straight walk, µc = 0.17 (see Table 1), Fw(0.17) predicts the probability
that 50 percentile males will slip. This information is not enlightening.

If walkers do not slip, they will not fall. The converse is untrue;
walkers that slip do not necessarily fall.

As it turns out, an appeal to reliability theory will enable us to
calculate the probability of walkers actually slipping. The reliability R of
a floor/footwear couple is the probability that its resistance µc is in
excess of its loading (H/V) or that µc – (H/V) > 0. In general, this
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reliability is given by Equation 14. This is the probability that walkers
will not slip or fall, thus,
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where f̃(H/V) is a gaussian distribution expressed as
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where H/V is the mean and σ is the standard deviation of the (H/V)
distribution. In this representation, –∞ ≤ H/V ≤∞. Various sets of (H/V, σ)
are given in Table 1. Also, the Weibull probability density function f(µc)
may be found by differentiating Equation 5, that is,
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Equation 14 must be solved numerically. Kececioglu and Cormier (1964)
give an excellent presentation on the development of R and they describe
various methods for integrating it.
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