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A study was undertaken to investigate whether driver celeration (overall mean speed change) behavior can 
predict traffic accident involvement. Also, to test whether acceleration, deceleration or the combined celeration 
measure was the better predictor. Bus driver celeration behavior was measured repeatedly in real traffic, 
driving en route, and correlated with accidents for which the drivers were deemed at least partly responsible. 
Correlations around .20 were found in several samples between celeration behavior and culpable accidents for 
a 2-year period. The results show that although celeration behavior is only semi-stable over time, it predicts 
with some accuracy individual accident involvement over 2 years. The predictive power of acceleration and 
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1. INTRODUCTION

The search for individual differences in 

psychological traits that can predict traffic accident 

liability has not been very successful. At least, no 

single individual variable has been found to be 

strongly related to accident record. Although this 

may partly be an effect of weak methodology in 

such research [1], it is probably also an effect of 

any one predictor being rather specific (e.g., speed 

or short headways), and therefore not being able to 

predict accidents in general, but only a sub-sample 

of them. This statement rests on the assumptions 

that accidents have a wide variety of causes, and 

that most predictors used are related only to one or 

a few of these (for reviews see af Wåhlberg [1] and 

Lester [2]).

On the other hand, a specific predictor could 

predict several types of accidents, due to one type 

of behavior being correlated with others (e.g., those 

who drive fast also keep short headways). This 

would increase the predictive power, but it would 

seem improbable that any one such syndrome could 

be very broad. The solution to this problem (apart 

from better methods) could be to use multiple 

predictors, like Harano, Peck and McBride [3], 

Asher and Dodson [4] and Häkkinen [5] did. 

However, such studies are very uncommon, because 

the downside is of course the large expenses and 

low practical applicability.

Another approach would be to use a general 

predictor, like age. The problem with such a 

predictor, however, is that it is too general, and 

neglects all the individual differences within any 

age group, thus being rather uninteresting from 
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a scientific, especially psychological, point of 
view. What is needed is therefore a predictor that 
is related to many risky individual behaviors, a 
predictor that is general but does not smear out the 
individual differences. Such a general-individual 
predictor has been proposed, discussed and tested 
in various ways in previous papers [6, 7, 8, 9, 10]. 
It has been named driver celeration behavior

1
, 

is conceptualized as the variability of driving 
behavior, and measured as the mean of speed 
changes during movement of a vehicle.

The driver celeration behavior theory [10] 
states that most driver behaviors are control 
actions relating to the vehicle and the driving 
environment, and that these behaviors cause 
changes in speed (lateral and longitudinal), which 
can be called celerations. A high mean level of 
celeration indicates an uneven driving style, which 
is predictive of accidents, because such behaviors 
are dangerous, due to low safety limits and 
unpredictability of the behavior of the driver for 
other road users. These behaviors are supposed

2
 

to be habitual (i.e., have some stability over time 
and environment), and some proof of this has been 
reported [7, 8]. However, the correlations between 
periods are not really satisfactory, and the problem 
of predicting anything from a semi-stable variable 
will thus be further discussed in the closing of this 
paper.

The data so far on driver celeration behavior 
and accidents is scarce and weak [6, 8, 9, 11, 12

3
; 

13], but given the methodological shortcomings of 
these studies (see af Wåhlberg [1]), the results are 
not disappointing. What has been needed is mainly 
a large set of celeration data, which has been 
collected under “ecological” circumstances, good 
accident data, and control of confounding factors. In 
the present study, the first three factors are probably 
present, while there are many confounders that will 
be treated separately in other papers.

The method for obtaining data was somewhat 
different in the present study as compared to the 

previous ones [6, 8]. Earlier, data was gathered 
manually, by riding on the buses with a measuring 
device. This was now upgraded to equipping five 
buses with logging devices

4
 that were hidden 

under the dashboard. These buses were continually 
in service on one particular route (the same as 
in previous studies). Thus, the potential sample 
was very much larger than before, as was the 
time for sampling of driving for each driver. The 
measuring equipment used the signal from the bus 
speedometer, and calculated accelerations as the 
changes in speed over time, i.e., only longitudinal 
accelerations and decelerations were measured. 
This is in contrast to the driver celeration behavior 
theory and previous studies where the resultant of 
lateral and longitudinal was included. However, 
in the second driver celeration behavior study 
[8], it was found that lateral movements added 
very little variation to the resultant, and the use 
of longitudinal accelerations only was therefore 
judged to be sufficient as an approximation, 
especially as the data set would be very large.

Also, an argument was forwarded by a 
reviewer of a previous study that acceleration 
and deceleration are not equally under volitional 
control, as the strength of accelerations are limited 
by the power of the engine, while deceleration 
is only physically limited by the braking power 
of the vehicle, which is usually considerably 
higher, creating an uneven space of behavioral 
choice. There might therefore exist a ceiling 
effect regarding acceleration, which could have a 
detrimental effect on predictive power. Therefore, 
in the present study, accelerations and decelerations 
were tested separately, alongside with the absolute 
celeration variable (which equals the gas/brake 
variable in the two previous studies). However, 
the driver celeration behavior theory predicts that 
the overall celeration variable is a better predictor 
of accidents, because more speed change data is 
included, and all changes contain some risk. 

1 Actually, the terminology has changed somewhat over time, but this is hopefully the final version. The word celeration is not a new 
construction but is used, e.g., within statistics. In the present work, it is only used in the sense stated in af Wåhlberg [10].

2 This is not a necessary assumption of the theory, but is an advantage when it comes to practical use.
3 The two studies by Lajunen [11, 12] seem to use the same set of data.
4 The logging device was a variant of a vehicle microcomputer developed by the Swedish company Drivec AB (www.drivec.se), with 

software adapted for the project that generated the data used in the present study.
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It should be noted that the division of celeration 
into positive and negative leaves another 
component unaccounted for: even speed or zero 
acceleration. This is included in the (absolute) 
celeration variable, but must be left out of 
acceleration and deceleration. This, however, is 
partly a measurement problem; if the measurement 
system is very finely graded, it will hardly register 
any even speed. The exact cut-off values and 
calculation methods used here are stated in the 
Appendix.

To sum up, the aims of the present work were 
to 

• replicate the results of the former studies, which 
found some positive correlations between 
driver celeration behavior and accidents, in a 
larger sample;

• compare the relative predictive power of (mean) 
acceleration, deceleration, and celeration.

2. METHOD

2.1. Subjects and Driver Celeration 
Behavior Measurement Method

The subjects were all bus drivers working at the 
Gamla Uppsalabuss bus company in Uppsala, 
Sweden. Measuring was done on one bus route 
during normal driving. Drivers were not aware of 
the study. 

Although the samples used included a large part 
of the population of drivers (about 350 at any one 
time), it may be suspected that a sample gathered 
in the present way is not quite random. This is due 
to two factors; people working more hours will 
be over-represented, as they are more probable 
to turn up and be measured. Also, duty rotation 
is not random for the majority of drivers, but 
restricted within certain parts of all possible duties 
(e.g., early shifts). As the buses equipped with 
the measuring devices were always on the same 
departure scheme, the same duties would always 
apply, and drivers who did not work on these 

shifts were therefore not measured. However, the 
system is not watertight; shifts may be vacant and 
worked by anyone who is free. On the other hand, 
the repeated appearance of a smaller number of 
drivers also means that several samples could be 
gathered, simply by using the first time a driver 
appeared for the first sample and so on (see 
Appendix). 

The buses used for measurements were all of the 
same type, Volvo B10L, (grand total weight 18.9 
tonnes, 12 m long) with a low floor. This type of 
bus was not exactly representative for the general 
population of buses at the company

5
, but probably 

not so different as to make a real difference. The 
route used for measurements was 12.4 km long 
(single journey), running from one side of the 
city to the other and back, passing the center of 
town. It was a very busy route, which might have 
something like 2,000 passengers on a normal day. 
Five buses were equipped with logging devices, 
described in section 2.2. These buses were in 
traffic for about 12 hrs a day on weekdays and 7 
hrs on Saturdays (the latter data not used in the 
present study). The route used was not in service 
on Sundays. Summer data was not used in the 
present paper, as traffic was very different during 
this period, compared to the rest of the year.

Measurements started on August 20, 2001, the 
day of the shift from summer to winter timetable, 
as part of a project on fuel-efficient driving [14, 
15]. The last data used was gathered in February 
2004. A total of 28 samples was gathered, mainly 
repeated measurements of the same drivers (see 
Appendix).

It might be noted that the quality of exposure of 
the subjects in the present study (as in the previous 
two) was very homogenous; duty rotation ensured 
this state of being. This means that some problems, 
like avoidance of difficult driving [16], were not 
present.

2.2. Measurement Equipment

Microcomputers were installed under the 
dashboard of five buses and connected to the 

5 There is a variety of buses used by the company from four makers (Scania, Volvo, Neoplan, Ontario), mainly of two types: two axles, 
about 12 m, 15+ tonnes taking 70–80 passengers, and three axles, 18+ m, about 25 tonnes with up to 120 passengers. The high floor type 
still dominates, although low floors are becoming more common.
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speedometer. The bus speedometers worked 
by receiving discrete pulses (not a continuous 
signal) that originated from magnets located on 
an axle in the transmission system. Whenever a 
magnet passed a fixed point, an electrical pulse 
was originated. The logging device that gathered 
the data on the measurement buses sampled the 
speedometer signal with 10 Hz and calculated 
positive and negative acceleration with 2.5 Hz 
using the differences in speed between discrete 
speed data points. A simple smoothing function

6
 

was used: the mean of the four previous values 
(see Appendix for details). The data was stored in 
a memory, which was collected and tapped every 
2 days.

For purposes of other research, zero acceleration 
(even speed) was defined as values closer to zero 
than 0.045 m/s2. In the present study, acceleration 
was therefore the mean of all values above  
0.045 m/s2 for a driver, and deceleration all 
values lower than –0.045 m/s2. Celeration, on the 
other hand, included all values (when v > 0) for 
the calculation of the mean, resulting in a lower 
absolute value on this variable as compared to the 
other two.

2.3. Demographical Data and Confounding 
Variables

Available from the bus company was data on the 
drivers’ age, gender, ethnicity and hours worked, 
the last being a good measure of the amount 
of exposure to risk of accident in this type of 
population, although the correlation with accidents 
is not strong. These data were used to check how 
representative the samples were of the population. 
The descriptive statistics for some samples and the 
total number of drivers for each of the years 2001–
2003 are shown in Table 1. These samples were 
of course very representative of the population, 
sometimes being close to 50% of all drivers 
working for the company. Some small differences 
can be seen, however. The probable reasons for 
this have been discussed in section 2.1., and the 
samples indeed had an over-representation of 
drivers who worked full time (this was ascertained 
from their employment numbers), as compared to 
their percentage in the population. This means 
that the driver samples also had more accidents 
in absolute numbers, but fewer per hour worked, 
compared to the population.

TABLE 1. The Percentage of Men, Percentage of People With Swedish Names, Mean Age, Mean Number 
of Hours Worked, and Mean Number of Responsible Accidents (per 1,000 Hours Worked and per 
Year) for Some Samples and for the Total Number of Active Drivers at Gamla Uppsalabuss (Uppsala, 
Sweden) for Each of the Years 2001–2003. Age Calculated for December 30 of Each Year

Sample/Population (Year) N
Gender 

(%)
Ethnicity 

(%)
Age  
(%)

Hours Worked 
per Year

Crashes 
per Year

Crashes per 
Hour per Year

Sample 1 (2001) 203 90.6 43.3 44.7 1396.4 0.325 0.233

Sample 4 (2001) 169 88.2 43.8 45.4 1385.9 0.296 0.214

Population (2001) 414 89.4 57.0 45.4 1214.9 0.222 0.183

Sample 11 (2002) 145 90.3 48.3 46.3 1649.6 0.269 0.163

Sample 16 (2002) 149 90.6 45.6 46.2 1553.2 0.248 0.160

Population (2002) 397 88.9 53.7 46.6 1306.7 0.176 0.135

Sample 22 (2003) 181 89.0 45.3 46.9 1515.7 0.276 0.182

Sample 27 (2003) 80 88.7 43.8 45.9 1551.2 0.262 0.169

Population (2003) 419 89.0 52.5 46.1 1260.4 0.208 0.165

6 Smoothing functions are similar to moving averages; in this case, the goal was to counter the unevenness introduced by the digital 
signal and make the result more like an analog signal.
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2.4. Accident Data

Accident data gathering and treatment has its own 
problems, which has been a recurrent theme in 
the driver celeration behavior studies and other 
work [1, 6, 8, 17, 18]. To the previous arguments 
and references concerning why only responsible 
accidents should be used in studies on individual 
psychological predictors of accidents may now 
be added that Garretson and Peck [19] found at 
fault and not-at-fault accidents to have different 
predictors, (see also Ball, Owsley, Sloane, Roenker 
and Bruni [16]). Similarly, Cation, Mount and 
Brenner [20] found only “avoidable” accidents 
to be associated with their predictor. On the other 
hand, McBain [21] found only non-preventable 
accidents to be correlated (and strongly so) with 
some of his predictors. Still, the majority of the 
evidence would seem to suggest that culpable 
accidents should be used as criterion for behavior 
variables. 

It might also be pointed out that the accident 
criterion source (bus company records) used in 
the present study has a validity that is probably 
much higher than other sources; self-reports are 
notoriously unreliable, as shown for traffic crashes 
([18, 22, 23, 24, 25, 26], but see also Dalziel and Job

7
 

[27]), as well as accidents in general [28], while 
state, hospital, and insurance company records 
mainly cover serious crashes [29] and also reflect 
regional habits of reporting [30]. There are also 
strange discrepancies between self-reported and 
police data (see, e.g., Várhelyi, Hjälmdahl, Hydén 
and Draskóczy [31]). Anyway, the database used 
in the present study contains more accidents than 
the drivers themselves could report retrospectively 
for a 3-year period [18]. The number of accidents 
per driver and year is higher for this population as 
compared to Swedish car drivers, but considerably 
lower than, e.g., the bus drivers studied by Blasco, 
Prieto and Cornejo [32].

The accident data used as dependent variable 
had been gathered through the years and is 
described and analyzed in detail in af Wåhlberg 
[17, 33, 34]. Driver reports about all kinds of 
incidents had been coded for, amongst other 

variables, responsibility of driver, and entered 
into a database. All happenings, which resulted 
in physical damage (more severe than scratches 
in paint) and/or injuries (bloodshed, or medical 
treatment necessary), due to traffic events (not 
intentional destructive behavior) were included. 
For the present study, the inclusion criteria 
were widened to include accidents at high speed 
(>50 km/hr), hitting animals, and incidents 
happening within the enclosed bus garage area. 
These had previously been excluded due to the 
aims of previous studies [17, 33] (low speed/
urban settings accidents). However, none of these 
added categories was large, so the difference was 
probably slight. The meaning of this broadening 
of the dependent variable is that not only traffic 
accidents in the sense of the public road system 
and its human users are included, but all types of 
mishaps which are at least partly due to the vehicle 
control behavior of the bus driver and result in 
some kind of damage were included. This is 
probably preferable both from the view of the bus 
company and society (not to mention statistically), 
and is fully compatible with the driver celeration 
behavior theory [10], although not necessary.

Only incidents for which the driver was in some 
way held responsible were included, meaning 
about 70% of the total. Responsibility was 
determined by the use of a rather harsh criterion; 
only happenings that could only have been 
avoided by being somewhere else (e.g., being hit 
from behind while stationary at a bus stop) were 
deemed as being the sole fault of some other road 
user. This criterion and the coding process are 
further described in af Wåhlberg [17]. The inter-
rater reliability was not very satisfactory (70%) 
for this variable, and it is therefore expected that 
a large degree of error has been included with this 
parameter.

2.5. Grouping of Data and Statistical 
Treatment

The data used in the present work was actually 
gathered continuously, but, due to many repeated 
measurements of drivers, they were sorted into 

7 The high agreement between self-reports and archival material found by these authors was probably due to methodological peculiarities 
that are usually not present in other studies. 
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periods (seasons) with no overlap, and in samples 
with some overlap in time (see Appendix), 
meaning that the first measurement of one driver 
could have been collected after the second or even 
third of another driver.

As before, correlations were calculated on 
different periods, as the optimal period for 
prediction is not known (for a discussion of this 
type of problem, see af Wåhlberg [1] and McKenna 
[35]). In the second celeration behavior study [8], 
it was found that 6 years tended to give the best 
result, much in agreement with Ball, Owsley, 
Sloane, Roenker and Bruni [16]. However, the 
optimal prediction time span should be individual 
for each variable used, due to its stability over 
time.

As accident data tend to be Poisson-distributed 
for short periods (while celeration values are 
normally distributed [7]), the choice of statistical 
method was not quite straightforward. However, 
in this study, as in the previous two, mainly 
Pearson correlations were used. This choice was 
made for two reasons; firstly, when longer periods 
are used for accident frequency calculations, the 
distribution will necessarily go from Poisson 
towards normality, and in this population the 
naughts will be fewer than the ones after about 
5 years calculated on responsible crashes only 
(which are about 70% of total, see af Wåhlberg 
[17]). Secondly, during the work on the first driver 
celeration behavior study, a Poisson regression 
was tested and yielded very similar results to the 
Pearson calculations. Also, Arthur and Doverspike 
[36] tested a log-linear transformation of accident 
data without getting any difference in correlations 
with their predictors. In the present study, 
correlations were supplemented by an ANOVA 
analysis of the celeration data, and regression 
analyses with age, gender and ethnic origin as 
added predictors.

The driver celeration behavior theory states 
that it is the behavior of the driver when the 
vehicle is moving that is of interest (because that 
is when the driver is actually in active control). 
Therefore, celeration values were calculated only 
for the periods when the bus was actually moving 
(v > 0). Furthermore, it is the mean absolute value 
of speed changes during movement that should 

be calculated, as a measure of vehicle control 
behavior.

The raw data is a string of values in meters/
seconds2 over time, each denoting how much speed 
has changed within this period (see Appendix). 
For each measurement occasion (where a number 
of individual’s occasions make up one sample), 
one single value is calculated which is the mean 
of all the raw data values when v > 0. These values 
can also be added to each other over measurement 
occasions for a driver, and a new mean created, 
presumably with better predictive properties. 
This is the empirical approximation of the overall 
celeration value, which is a sum of all celeration 
values [10].

Now a note on the somewhat difficult 
terminology within this work. The main source 
of possible confusion rests with the word mean. 
As this is a mathematical term, it cannot easily 
be replaced. Therefore, be certain to differentiate 
between the following uses; 

(a) the mean of celeration behavior for an 
individual on one measurement occasion; 

(b) the mean of celeration behavior for a sample, 
i.e., a group mean;

(c) the mean celeration behavior for an individual 
over samples, i.e., several cases of (a).

All correlations with accidents were computed 
for (a) or (c), while values of (b) can be seen in 
Table 2. 

As the variation within subjects seems to be large 
in these data (the correlations between celeration 
behavior measurements in the first four samples 
used here were found to be around .40–.50 in af 
Wåhlberg [7], and aggregation of data generally 
yield a more stable estimate of the true value (in 
this case mean celeration behavior of a driver), it 
is of interest to try to increase the stability of the 
celeration variable, and therefore its predictive 
power, by using the mean celeration behavior 
over several samples, or taking the mean accident 
correlation from several samples.
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TABLE 2. The Means, Standard Deviations, 
Maximums and Minimums of the Celeration 
Variables in meters/second2, and These Statistics 
for the Distance That the Celeration Values are 
Calculated Over (km), for Samples 1–9 

Sample 1 (N = 208)

Variable M SD Max Min

Acceleration 0.579 0.070 0.806 0.337

Deceleration –0.557 0.074 –0.821 –0.360

Celeration 0.530 0.066 0.766 0.321

Distance 36.4 13.7 62.3 12.2

Sample 2 (N = 144)

Variable M SD Max Min

Acceleration 0.582 0.069 0.762 0.338

Deceleration –0.557 0.063 –0.706 –0.383

Celeration 0.531 0.061 0.675 0.324

Distance 36.2 14.3 62.3 12.3

Sample 3 (N = 81)

Variable M SD Max Min

Acceleration 0.582 0.066 0.740 0.435

Deceleration –0.558 0.072 –0.735 –0.387

Celeration 0.531 0.064 0.683 0.393

Distance 36.7 15.5 63.8 11.8

Sample 4 (N = 171)

Variable M SD Max Min

Acceleration 0.568 0.081 0.808 0.331

Deceleration –0.543 0.080 –0.798 –0.357

Celeration 0.519 0.074 0.754 0.319

Distance 37.0 15.0 63.0 12.1

Sample 5 (N = 82)

Variable M SD Max Min

Acceleration 0.571 0.071 0.729 0.434

Deceleration –0.540 0.070 –0.738 –0.406

Celeration 0.519 0.064 0.679 0.383

Distance 38.4 14.9 62.5 12.4

Sample 6 (N = 55)

Variable M SD Max Min

Acceleration 0.593 0.074 0.814 0.451

Deceleration –0.548 0.074 –0.801 –0.383

Celeration 0.532 0.066 0.756 0.388

Distance 33.9 14.6 61.7 12.4

Sample 7 (N = 166)

Variable M SD Max Min

Acceleration 0.592 0.066 0.795 0.413

Deceleration –0.549 0.072 –0.794 –0.370

Celeration 0.533 0.062 0.746 0.361

Distance 39.2 13.3 62.6 12.3

Sample 8 (N = 108)

Variable M SD Max Min

Acceleration 0.576 0.062 0.720 0.407

Deceleration –0.536 0.065 –0.704 –0.419

Celeration 0.519 0.059 0.665 0.400

Distance 38.6 13.0 62.6 12.4

Sample 9 (N = 70)

Variable M SD Max Min

Acceleration 0.577 0.064 0.726 0.477

Deceleration –0.538 0.070 –0.731 –0.412

Celeration 0.521 0.062 0.698 0.398

Distance 37.6 15.3 62.6 12.3

Notes. Mean values differ very little between 
samples. These data are therefore not shown for the 
other samples. The minimum and maximum values 
of deceleration have been switched, as strength 
goes up with lower (negative) values, and the values 
for celeration are lower than those for acceleration 
and (absolute) deceleration, as it is calculated 
including the zero celeration values (even speed), 
thus “diluting” the mean with zeroes.

3. RESULTS

Differing Ns will be reported in the various 
calculations, as the number of subjects available 
for each calculation was due to factors like 
replacement of drivers by the company over time, 
unreliable data, and how many times a driver had 
been measured.

It can be seen in Table 2 from the group means 
and standard deviations of the celeration variables 

that the drivers tended to drive in a slightly less 
forceful way during the winter, at least when the 
first snow had fallen (sample 4). Otherwise, the 
differences were slight between samples, i.e., 
over time and to some degree among subjects. 
The distance reported is that used for calculating 
the celeration variable. As it differs somewhat (or 
even rather much in some cases), this aspect of 
the methodology might actually insert some error 
variance.
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As data had been gathered for several years, 
different periods were used to form the dependent 
variable. Therefore, the data was split into three 
sets, which also served the purpose of covering 
about a year each (fall–winter–spring). Summer 
data was not used, due to very little traffic and in 
general a very different traffic environment. Table 
3 illustrates the correlations computed between 
the celeration variables in each sample and the 
number of accidents over two different 2-year 
periods (the period closest in time to when the 
sample correlated with it was gathered). The mean 
of these correlations in each set of samples was 
also calculated.

Also, the measurements were aggregated over 
samples, i.e., a mean celeration behavior (in the 
sense of (c) was calculated for each driver for three 
different periods. These aggregates were then used 
as correlates, and the results are shown in the most 

right-hand column in Table 3. It can be seen that 
the aggregation of celeration data over samples has 
pretty much the same effect as computing the mean 
correlation over samples. The differences between 
the correlations of celeration versus acceleration/
deceleration all had alpha levels below .10 but 
above .05 (significance test for difference between 
dependent correlations) for the aggregated data, 
apart from acceleration in the second set, where the 
difference was contrary to prediction.

Concerning the period chosen for correlation 
with the predictors, it should be pointed out that 
several periods of differing length were tested. 
One-year periods yielded similar but worse results 
than 2 years, and longer periods yielded mainly 
non-significant correlations.

Thereafter, a multiple regression analysis was 
undertaken with the confounding variables that 
were available (gender, age, ethnic origin and 

TABLE 3. The Pearson Correlations Between the Celeration Variables and the Number of Responsible 
Accidents for All Samples. In the Next to Last Column, the Mean of These Correlations, Calculated 
as the Square Root of the Mean of the Squared Correlations, Unweighted for N. Finally, to the Utmost 
Right, the Correlations of Accidents With the Mean of All Available Measurements From Each Set for 
Each Driver on the Three Predictor Variables. 

Sample 1 2 3 4 5 6 7 8 9
M of  
1–9

1–9  
Aggregated

N 203 142 80 169 81 54 163 107 70 118.8 243

Celeration .125 .203* .311** .232** .106 .197 .175* .193* .332** .220 .220***

Acceleration .112 .152 .310** .223** .094 .181 .179* .206* .355** .217 .185**

Deceleration –.094 –.226** –.247* –.227** –.085 –.217 –.139 –.163 –.235 –.191 –.198**

Notes. The first set (samples 1–9) was measured in 2001–2002 (1–9 measurements per driver, M 4.4) and used 
accidents 2001–2002 as dependent variable. *p < .05, **p < .01, ***p < .001.

Sample 11 12 13 14 15 16 17 19 20 21
M of 

11–21
11–21  

Aggregated

N 145 71 174 143 108 149 93 130 73 40 112.6 224

Celeration .290*** .146 .139 .294*** .231* .250** .185 .225** .151 .266 .225 .223***

Acceleration .274*** .079 .161* .252** .203* .246** .193 .200* .119 .207 .216 .226***

Deceleration –.280*** –.226 –.102 –.240** –.236*–.232** –.140 –.189* .009 –.211 –.197 –.187**

Notes. The second set (samples 11–21) was measured in 2002–2003 (1–10 measurements per driver, M 5.1) 
and used accidents 2002–2003 as dependent variable. Samples 10 and 18 excluded due to too few cases. 
*p < .05, **p < .01, ***p < .001.

Sample 22 23 24 25 26 27 M of 22–27 22–27 Aggregated

N 181 149 123 100 78 80 118.5 189

Celeration .193** .246** .261** .129 .150 .173 .198 .214**

Acceleration .187* .247** .214* .146 .067 .120 .174 .183*

Deceleration –.154* –.192* –.247** –.078 –.177 –.222* –.186 –.181*

Notes. The third set (samples 22–27) was measured in 2003–2004 (1–7 measurements per driver, M 3.8) and 
used accidents 2002–2003 as dependent variable. Sample 28 excluded due to too few cases. *p < .05, **p < .01.
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experience) as predictors along with each of the 
acceleration variables in the aggregated form (as 
seen in Table 3, right-hand column). The results 
were that, out of nine regressions run, only in one 
instance did one of the other variables (ethnic 
origin) add significantly to the model. Therefore, 
in accordance with theory [10], these variables 
do not seem to add any predictive power beyond 
what celeration yields.

The effect of celeration on accidents can also 
be expressed as the difference in celeration level 
between those with different numbers of incidents 
(see Table 4 for aggregated samples). As might 
be noted, all samples proceed in the same order 
of magnitude; a higher celeration group mean 
indicates a higher accident group mean.

Thereafter, the regression equation for the 
correlation between the mean celeration of 
samples 1–9 and accidents 2001–2002 (right-
hand column in Table 3) was used to predict the 
accidents of 2002–2003 for the drivers in samples 
22–27. Using only a dichotomized grouping (no 
accidents versus accidents), a cut-off point at 
0.5 predicted accidents correctly identified 63% 
of drivers, as compared to the random allotment 
result of 50%. Overlap between predicted and 
original sample was 151 drivers.

As for the stability of celeration behavior, the 
correlation between mean values in samples 
1–9 and 22–28 was .64 (p < .001) for drivers 
with at least four measurements in each period  
(N = 60). The time elapsed between measurements 
in the two periods was at least 14 months, and 
a maximum of more than 3 years. This result 

indicates an increase in stability with aggregation 
of data, as expected.

Finally, celeration behavior correlated above 
.90 with acceleration and deceleration in the first 
nine samples, and .20–.60 with mean speed of 
driving. It should, however, be remembered that 
the celeration variable partly includes speed [10] 
if conceptualized as the mean of movement (not 
the time to get from point A to point B). If mean 
speed on the other hand is calculated including 
standstills along the route, there is no association 
with celeration behavior [7, 9]. 

4. DISCUSSION

Despite the shifting results in the un-aggregated 
data, the present work lends some support to the 
basic prediction of the driver celeration behavior 
theory; that there is a positive association between 
celeration behavior and traffic accidents. However, 
it would also seem to be clear that the predictive 
power over time is rather limited, given the present 
amount of data and method, 2 years yielding the 
only useful correlations. Given the not very high 
stability of the celeration variables (see below), 
and even lower intercorrelations of accidents 
between years (preliminary, unpublished analyses) 
in the population studied, this was expected 
(for examples of calculations on the stability of 
accident record over time on similar populations, 
see Häkkinen [5], Cresswell and Froggatt [37], 
Milosevic and Vucinic [38]). 

Concerning the interpretation of the differences 
in correlation values between celeration and 

TABLE 4. The Difference in Mean Celeration (m/s2) Levels (Aggregated Over Samples) Among Groups 
of Drivers With Differing Numbers of Accidents During 2001–2002 (1–9) and 2002–2003. Analysis of 
Variance Calculated. Tukey Post-Hoc Tests Indicated That in All Cases the Effect Was Carried by the 
Last Group (3–4)

No. of Accidents 0 1 2 3–4 F dt Error p

N 159 53 23 8
M celeration 1–9 0.526 0.531 0.553 0.575 4.05 239 < .01
N 143 57 16 8
M celeration 11–21 0.491 0.500 0.518 0.548 3.41 220 < .01
N 121 48 12 8
M celeration 22–27 0.475 0.483 0.494 0.529 3.62 185 < .05
Notes. dt—delta time.
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acceleration/deceleration, none of these were 
significant at the p < .05 level. However, five out 
of six differences were as predicted and significant 
at p < .10. This would seem to lend some weak 
support to the prediction of celeration as the best 
correlate, although the difference is probably so 
slight as to have little practical impact.

Turning to the aggregation of data, the 
differences between aggregating over correlations 
(taking the mean over samples) or aggregating 
celeration data and correlating with accidents 
would seem to be slight. This was not quite as 
expected, but was probably due to the drivers with 
few measurements still inserting a high degree 
of error into the aggregation over measurements. 
However, the question about the effects of 
aggregation will need to be studied further.

There are also several other methodological 
points concerning the celeration variable that so 
far have not been adequately addressed. First, the 
stability over time did not increase as expected 
with increased amounts of data per measurement 
day (compare the results in af Wåhlberg [7, 8]), 
where the correlations between measurements 
were similar, despite large differences in the 
amount of data from each day). Several reasons 
may be suspected, such as differences in weather, 
number of passengers and traffic. However, several 
of these have been investigated and not found to 
be very strong. Instead, it would seem that it is the 
amount of time between measurements that add 
error variance [7]. But then the question arises why 
this is so. Why does a driver change his style over 
time in a so far unpredictable manner? Apart from 
random happenings such as a row at home, or a 
particularly nasty passenger, there is one possible, 
and testable, confounder; accidents. How people 
react to accidents in terms of their own driving is 
hardly researched at all, but some researchers claim 
that avoidance and other reactions are at hand after 
accidents [39, 40, 41, 42, 43, 44], outcomes that 
would make us expect that the occurrence of an 
accident would decrease the probability of having 
another one. However, Blasco, Prieto and Cornejo 
[32] found just the opposite, namely that accidents 
tend to cluster in time. Their conclusion was that 

having an accident changes in some way people’s 
driving—towards a more negative emotional 
state, which in turn predisposes them to having 
another crash. This hypothesis has two weak 
points; why would a person become more risky 
instead of more careful in his/her driving after an 
adverse event, and especially, how can the trend be 
broken, i.e., why is there not an infinite regression 
towards an infinite number of accidents? Despite 
these problems, the data presented by Blasco et 
al. agrees with their hypothesis. However, you 
might as well assume that the clustering is caused 
by another semi-stable factor, like a stressor. 
That stressing life events may cause a temporary 
increase in accident proneness has been found 
by Selzer and Vinokur [45], Selzer, Rogers and 
Kern [46], McMurray [47] and Holt

8
 [48], while 

Isherwood, Adam and Hornblower [49] did not 
find anything of the kind.

Another possible confounder was found during 
an analysis of data for another part of the project 
that provided the celeration data; daylight. In 
some calculations it was found that mean level of 
celerations changed with temperature. However, 
this was suspected to be an artifact of temperature 
correlating with the amount of daylight; the real 
association being drivers accelerating less during 
dark hours. This suspicion is in accordance with 
the finding of Fuller [50] that truck drivers kept 
longer headways during late shifts, which occurred 
mainly during darkness, and will be tested on the 
present data in the future.

The present results have been found for bus 
drivers in a Swedish town of some size, putting 
strong limits on the generalization of results. 
However, the theory behind the study predicts 
that the same kind of association would exist in 
all populations, with the only limitation being 
that raw values may not be comparable between 
environments and vehicles, a problem that a 
weighting factor calculated from the means of 
the populations ought to be able to handle, or a 
standardization of values.

The use of several different periods for 
calculating accident frequency is a fairly novel 
methodological tool (previously used by Quimby 

8 The methodology of those four studies was of low quality.
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and Watts [51], who found 2 years to be better 
than 3; and Ball, et al. [16], where 5 years was 
superior to shorter periods). Most studies of 
accident prediction would seem to pick a period 
without any justification at all (see af Wåhlberg 
[1], for a review and discussion). Given the present 
results and those of previous studies, it would 
seem justified to repeat the advice that researchers 
study their predictors from the viewpoint of the 
prediction time range.

Returning to the level of predictive power 
of celeration found in this study, it should be 
emphasized that the method used was rather basic. 
In fact there are a number of methodological 
and theoretical tools that may be applied to data 
of this type and which are expected to increase 
the predictive power. These include further 
aggregation of celeration data, and holding 
constant the influence of traffic density, amount 
and type of exposure. When these methods have 
been developed, it is expected that correlations 
with accidents will increase substantially. It should 
also be borne in mind that the presently used 
measurement method is only an approximation for 
the theoretical variable, both in terms of amount 
and type of data.

The findings in the present study, as well as the 
general approach to the causes and predictions of 
crashes, would seem to be at odds with the view 
recently forwarded that human error is “...not an 
explanation of failure...” and that “...effective 
countermeasures start not with individual human 
beings...but rather with the error-producing 
conditions present in their working environment” 
(p. 371) [52]. Incidentally, the author also claims 
that “most of those involved in accident research 
and analyses are proponents of the new view” 
(p. 372). Despite the possibility that the criticism 
of the habit of accident researchers of simply 
blaming human error for any mishap is valid, this 
would seem to be expanded into a sort of system 
view where humans have no individual influence, 
as all blame is instead on the system, and anyone 
in the same situation would seem to be expected 
to have done the same acts (which lead to an 
accident). This reasoning overlooks two or three 
very basic findings about humans and accidents; 
behavior varies between people, even when the 

situation is exactly the same, while some stability 
of behavior is present for the individual, even 
when circumstances change, and there is some 
stability in accident liability [5, 32, 37, 38]. None 
of these findings fit into “the new view”. The 
present work (and of course a large number of 
other psychological studies) instead indicates that 
traffic accident involvement can be predicted from 
the behavior of those involved over long periods 
of time. While this does not exclude that the 
system has detrimental influences on the behavior 
of the drivers, it does invalidate the extreme view 
that “human error is a symptom of trouble deeper 
inside the system” (p. 372) [52] and nothing much 
else (see also McKenna [53] for similar though 
less extreme views).

The theory of driver celeration behavior 
describes the relationship between individual 
celeration behavior and traffic accident record, 
and make predictions about the relations between 
various predictors of accidents. However, the 
theory does not state how or why celeration 
behavior originates, why it differs between drivers 
and so forth. In essence, all the favorite subjects of 
psychologists are missing. This is due to the main 
goal of this research being finding a strong predictor 
of traffic accidents which could be practically 
useful. This goal excluded, on theoretical grounds, 
the use of variables not directly related to driving, 
like personality and intelligence. Also, many such 
variables have been tested, and not fared well as 
predictors of accidents (see reviews [54, 55, 56, 
57, 2, 58, 59] and the meta-analysis by Arthur, 
Barrett and Alexander [60]). However, when 
celeration behavior has been thoroughly tested and 
found to be predictive of accidents and its related 
phenomena, in accordance with theory, the time 
will have come to turn to the these distal variables 
and try to ascertain why celeration behavior differ 
between and within individuals as it does [7]. For 
methodological and practical reasons it would 
seem to be most important to start with the within-
subject variation, as it makes single measurements 
fairly unreliable, and determinants of sudden high 
peaks in a driver’s behavior could be useful for 
safety work.

It has been suggested that the celeration variable 
might be due to differences in impulsivity, a 
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part of neuroticism in the Big Five personality 
inventory. Such a proposition is compatible with 
the celeration theory, as there is no theoretical 
connection between them, and a lack of data on 
this possible association. It should also be noted 
that all the Big Five dimensions seem to be 
modestly related to accident involvement [61].

The time would seem to be ripe to suggest that 
the driver celeration measure should be introduced 
into research and practical settings on a larger scale 
than hitherto. In the present paper and others it has 
been shown to be associated with traffic accidents, 
but other work has also found correlations with 
fuel consumption [14] and passenger comfort 
[15]. Furthermore, its psychometric and statistical 
qualities are acceptable [7], and should be 
possible to increase further with more aggregation 
of data [62]. This would seem to argue strongly 
in favor of using this variable for all types of 
driver studies, but also as an objective measure in 
training and testing situations, and above all for 
continuous surveillance and feedback. There is 
of course a need for further validation in different 
settings, but the evidence so far seems to indicate 
that the properties of this measure compare rather 
favorably to most other variables and concepts 
used when it comes to measuring and predicting 
driver behavior.
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APPENDIX 
Calculation of Predictor Variables  

and Ordering of Measurements

All predictor variables come from the same data; measurement of pulses from the speedometer system of 
the buses. These pulses signify that a certain length of road has been traveled (for the buses in the present 
study 1/6900 of a kilometer). By counting the number of pulses for a period (given by the internal clock of 
the measurement system), it is possible to calculate mean speed during this period.

The speed signal is tapped from the vehicle’s speedometer with a frequency of 10 Hz, an interval of 
100 ms. During this interval, the number of complete pulse-cycles is counted, and speed and acceleration 
calculated with the following formulas.

Figure 1. Example.

Example

t = T0 + T1 + T2,
n = 3.

Speed calculation formula: 

v = ((n/t)/w) • 1000, 

where v—speed (m/s), n—number of pulses from the speedometer, t—time for n pulses to accumulate (s), 
w—pulses per kilometer. 

Acceleration calculation formula:

a(4 n) = ((v(4 n) + v(4 n+1) + v(4  n+2) + v(4 n+3))/4 – (v(4 n) + v(4 n–1) + v(4 n–2) + v(4 n–3))/4)/2.5,

where a—acceleration (m/s2), v—speed (m/s), n—number of acceleration measurement points.

Calculation of Predictors

The data from the measurement system was given as several columns of values (of which only speed 
change is of importance here), with each case representing a time frame (0.4 s for speed changes). From 
such a file the values of the predictors were computed as a mean for a time segment (cases 1 to n), which 
had been identified as having been driven by a certain driver.

Celeration was calculated as the absolute mean of all speed changes when v > 0. Deceleration and 
acceleration were similarly calculated as means from all values below –0.045 m/s2 and above 0.045 m/s2, 
respectively.
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Ordering of Measurements

As measuring was operative continuously for several years, drivers who worked a lot, and on certain duty 
rotation lists, tended to be measured several times, while others were rarely so. To utilize as much data as 
possible, but still retain a data arrangement that was ordered in time, these repeated measurements were 
ordered into samples within periods. One such period can be seen in Table A1 (where numbers designate 
measurement order, i.e., 1 is the first measurement of this driver). It shows that driver Nilsson was 
measured three times during the fall season. These three measurements were easily ordered into the three 
samples of this period. Driver Jonsson, on the other hand, was only measured twice, and would therefore 
be absent from the third sample. Note also that despite the first measurements of Nilsson and Jonsson 
being a month apart, these would still both be ordered into the first sample. Finally, although Andersson 
was among the last to be measured, his single value would still be put with other first measurements in 
sample 1 (Table A2).

TABLE A1. The Order of Measurements

Driver August September October November December

Nilsson 1 2 3

Jonsson 1 2

Pettersson 1 2 3

Andersson 1

TABLE A2. Measurements in Samples

Driver Sample 1 Sample 2 Sample 3
Nilsson 1 2 3

Jonsson 1 2
Pettersson 1 2 3

Andersson 1

When the season was finished (decided by the weather), a new grouping would start, in this case winter, 
with three new samples (4–6), where the first measurement of each driver this season was ordered into 
sample 4, and so on.


