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Postural control is a common mechanism to compensate for unexpected displacements of the body. In the 
older population, a slip or fall due to a failure of postural control is a common cause of morbidity and 
mortality. The ability of postural control decreases with aging or neuropathy. In this study, 2 groups, diabetics 
and non-diabetics in the older population, were compared to determine how patterns of postural sway during 
quiet standing were related to the detection of perturbation. The SLIP-FALLS system was applied to the 
measurement of sway and detection of perturbation. In phase 1 of the development of the predictive model, 
neural network algorithms were applied to find determinant variables for perturbation detection. In phase 2, 
a fuzzy logic inference system was developed to investigate the relationship between sway and perturbation 
detection. Results of this study may be applied to the design of floor mats or shoe insoles for preventing 
fatigue in workplaces.
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1. INTRODUCTION

Slips and falls are common causes of morbidity 

and mortality in the older population. Since the 

normal aging process diminishes the physical 

and psychological functions of humans, it is 

more likely for the elderly to be at risk from falls, 

especially after the age of 65 [1]. One study reports 

that one third to one half of the older population, 

aged 65 or over, experience falls every year [2]. 

The high possibility of falls in the elderly is due 

to the inability to maintain postural control when 

encountering unexpected displacements of the 

body [3]. Postural control requires an ability to 

keep the body’s balance in space through visual, 

vestibular, and somatosensory systems while 

making an appropriate musculoskeletal response 

to perturbations. Keeping the balance is an ability 

to maintain the center of gravity of the body over 

the base of support; it requires capabilities of 
position maintenance, stabilization for voluntary 
movements, and reaction to external disturbances 
[4]. Maintaining and stabilizing the body’s balance 
during voluntary movements require visual, 
vestibular, proprioceptive, kinesthetic, and somatic 
senses. These senses are expected to work in an 
integrated fashion to keep the balance. Reactions 
to external disturbances, such as a slip or a fall, 
require a process of detection and control of 
motion changes.  

Even though sensing a disturbed balance is 
only one of the components necessary to control 
postural stability, the ability to detect a perturbation 
may be a critical measure for predicting the 
potential of failure to prevent a fall initiated by 
slipping. In the literature static and dynamic 
postural stability tests are introduced to the 
quantitative assessment for detecting fall initiation. 
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As a static test, Graybie and Fregly [5] developed 
a Sharpened Rhomberg test to assess degrees of 
sway while placing the toe of the dominant foot 
against the heel of the non-dominant foot with the 
eyes closed. The Rhomberg test was originally 
considered as a test for detecting damage to 
the posterior columns of the spinal cord [6]. 
Woollacott, Shumway-Cook, and Nashner [7] 
found a positive correlation between the amount 
of sway, age, and muscular reaction time. Lord, 
Clark, and Webster [3] showed that the amount 
of sway tended to increase with declining joint 
position sense, tactile sensitivity, vibration 
sense, or visual acuity. These measures lack 
the common factor for all falls, which is failure 
to sense a perturbation and regain a balance. 
Falls in the older population are frequently the 
result of an accidental slip or trip caused by an 
unsteady gait [2]. According to Lord et al. [3] the 
lack of a stable gait might be due to deficiencies 
of postural control of short and unexpected 
displacements of the body. The ability to respond 
to transient perturbations can be considered 
as another measure for keeping balance and 
stability. Dynamic postural stability tests measure 
the response when a perturbation is applied to 
the body in order to examine some aspect of the 
complex postural mechanisms. Maki, Holliday, 
and Fernie [8] applied an external perturbation 
to the feet or ankles by translating or rotating a 
platform. Internally generated perturbations such 
as a reaching [9] or a weight-shifting task [10] 
are also used. Many different measures are used 
to quantify the response to various perturbations 
such as center-of-pressure [11], body segment 
movement [7], and patterns of muscle activation 
[12]. Pavol, Runta, Edwards, and Pai [13] 
investigated the effects of age on sit-to-stand 
slips and reported that older adults were more 
vulnerable to an unexpected perturbation even if 
it could be easily sensed. Balasubramanian [14] 
found a decreased fidelity in detecting small 
perturbations in the older population compared 
to younger population groups. Speers, Kuo, and 
Horak [15] hypothesized that increases in sway 
in older populations were due to decreased ability 
to detect small movements. These studies imply 
that there is a higher chance for older people 

not to detect slipping motions such as stepping 
on ice or walking on a wet floor, resulting in an 
increased risk of falling. Detection of smaller, 
less discernable perturbation can lead to further 
insights into postural control during slips. 

Predicting the potential of slips or falls will 
be a difficult task. One of the possible reasons 
may be a complexity of factors including human 
and environmental aspects and the complicated 
relationships between them. Thus, it is unlikely 
for a predictive model to be successful if the 
analysis is based on a traditional set theory using 
binary memberships of set elements. Since it can 
be assumed that a postural control mechanism 
is based on a complex and uncertain procedure 
of cognitive, psychological, and behavioral 
processes, it will be very possible for set 
memberships to be indecisive, resulting in partial 
memberships. Zadeh [16] introduced a fuzzy 
set theory to the partial status of membership 
for a set and for measurements of membership 
on the basis of the possibility theory. Unlike 
conventional statistical methods, fuzzy logic 
approaches that mimic human capabilities of 
approximate reasoning can tolerate a possible 
imprecision, uncertainty, and partial truth of 
attributes for achieving a tractable, robust, and 
low cost analysis. 

The objective of this study was to build a neural 
network-based fuzzy logic inference model to 
predict the perturbation detection capability on the 
basis of sway characteristics during quiet standing 
in an older population. Instead of large magnitude 
perturbations, this study employed a very small 
stimulus at the psychophysically detectable edge. It 
was based on the premise that postural instabilities 
or possibilities of slips and falls were related to the 
ability of detecting cues indicating that a margin 
of stability was exceeded and an abnormal motion 
was about to occur. In this study, the variables to 
be considered were treated as fuzzy sets to take 
vagueness of attributes into account. Two phases 
were used to build a prediction model that was a 
hybrid of a neural network algorithm and fuzzy 
logic inference. In phase 1, a supervised learning 
of neural network algorithm was used to select 
influential variables from the considered ones. In 
phase 2, a fuzzy logic rule-based inference system 



243BODY SWAY/SLIP PERTURBATION DETECTION

JOSE 2006, Vol. 12, No. 3

was developed with the variables identified from 
phase 1. 

2. METHODS

2.1. Sway Measures

The following measures were considered as 
independent variables: the anterior-posterior 
center-of-pressure (AP-COP), media-lateral 
center-of-pressure (ML-COP), EMG from the 
medial segment of tibial anterior (TA) and 
gastrocnemius soleus (GS) muscle groups on 
both legs, and head acceleration. Each predictor 
variable was recorded with 250 readings per 
second during quiet standing. An average of the 
readings for a 20-ms window was calculated 
before the platform movement. Detection of 
platform movements at an average threshold 
of acceleration was considered as a dependent 
variable. It had a binary value 1 for detect and 0 
for no-detect of perturbations.

The Sliding Linear Investigative Platform 
for Analyzing Lower Limb Stability (SLIP-
FALLS) system at the Overton Brooks 

Veterans Administration Medical Center 
(VAMC) in Shreveport, LA, USA, was used 
to provide an intensity of perturbation stimulus 
that would elicit a dynamic response, but not a 
significant compensation or a fear reaction to 
the movements. The SLIP-FALLS system was 
designed to displace the platform at a precisely 
controlled movement without detectable vibratory 
cues [17]. The system measured the AP-COP 
and ML-COP using four load cells, platform 
acceleration, four channels of EMG data, and 
subjects’ psychophysical response. 

2.2. Determination of Threshold

Detection or discrimination of thresholds is 
a typical psychophysical test. The types of 
instructions for making a decision generally 
influence psychophysical responses. In conserv-
ative instructions, subjects are always asked to be 
so certain of the response that consequently they 
tend not to respond even to a detectable event. 
The opposite effect is observed when using liberal 
instructions, i.e., subjects can respond without any 
fear of punishment. When subjects are presented 
with a Yes or No (Present or Absent) question, 

Figure 1. Acceleration profile during 16-mm perturbation (a) platform displacement, (b) acceleration 
of platform). 

(a)

(b)
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it is hard to determine a threshold because it is 
uncertain which judgment criterion—conservative 
or liberal—is adopted by the subjects. 

The parameter estimation by sequential testing 
(PEST) was used with a two-alternative forced 
choice paradigm (One and Two in the test 
protocol) to determine thresholds of detection. 
The paradigm had subjects pick one alternative 
from two available choices presented sequentially. 
The PEST [18] is an adaptive psychophysical 
method where the intensity of stimulus is 
changed according to a previous response until a 
desired level of performance is obtained. The rule 
for changing stimulus intensity is analogous to 
the simple up-or-down rule. Stimulus intensity is 
not changed until a sequence of ups or downs has 
been observed. Levitt [19] reports probabilities 
of positive responses at convergence for different 
strategies of changing up-and-down sequences. 
After three true detections, the stimulus intensity 
decreased. When missing one true or one false, 
the stimulus intensity increased. To determine the 
threshold, the subjects were tested for a maximum 
of 30 trials after 10 practice trials using the SLIP-
FALLS. Figure 1 shows a plot of the acceleration 
profiles of platform displacement. 

2.3. Participants and Test Protocol

The Social Service Department at Overton 
Brooks VAMC recruited participants 50–80 
years old. A total of 13 participants, 4 females 
and 9 males, participated in this study voluntarily. 
The ages ranged between 50 and 64 years old, 

and the mean age was 58. Six of them had Type 
2 diabetes with neuropathy, and the rest of the 
participants were non-diabetic and neurologically 
intact. Tri-electrode EMG electrodes were 
attached to the medial segment of the GS and 
TA muscle groups bilaterally. The participants 
positioned their bare feet in a designated area 
on the platform of the SLIP-FALLS. In this 
study, the side-by-side stance position was used 
because the center-of-pressure could be measured 
more reliably from that stance [20]. A triaxial 
accelerometer from NGT Technology (USA) 
was used to provide a ±1.33 g acceleration 
range with 1.5 Volt per g conversion. The head 
accelerometer was placed on the left headphone 
ear-piece roughly in line with the horizon while 
the head was held in a 0o tilt position. The 
acceleration line of force that was collected was 
related to the head perpendicular to the frontal 
plane. Figure 2 shows the graphical representation 
of possible ranges of the AP- and ML-COP and 
head acceleration. For testing a displacement 
perturbation, the subjects had headphones 
producing a constant masking white noise of 70 
dB and a blindfold to cut off any auditory and 
visual cues. The following instructions were 
given over the headphones for the subjects to 
decide when the platform moved: Ready, One, 
Two, and Decide. Subjects were asked to press a 
wireless doorbell chime held in their hand once or 
twice if they detected a movement at One or Two, 
respectively, right after the Decide instruction. 
A 4-s interval was given between instructions. 

Figure 2. Directions of sway. 
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No feedback on the correctness of response was 
provided to participants. The length of translation 
for “smooth” acceleration perturbations was 
16 mm because it was near the maximum sway 
range. The acceleration of the platform for testing 
was set at 125% of the average threshold found. 
After 5 practice trials, the test ran for at most 30 
trials.

2.4. Data Analysis

2.4.1.  Phase 1: selection of influential 
variables

In this study, a supervised learning neural 
network was used to find influential predictors 
according to the weights of neurons involved 
in the learning process. A supervised learning 
method is usually applied to tasks such as pattern 
classification and function approximation with a 
given data set [21]. 

The data set was divided into diabetics and 
non-diabetics. For each group, the selection 
process was performed using the following 
network architecture: 

1. number of hidden layer: 1, 
2. hidden layer size: 2, 
3. learning parameter: 0.5, 
4. momentum: 0.1, 
5. initial weight on neurons: 0.5, 
6. number of training cycle: 100. 

Since the objective of the supervised learning 
neural network in this study was not to classify 
the responses into detect or no-detect, but to find 
influential variables for perturbation prediction, 

the binary dependent variable was treated as a 
continuous variable for function approximation. 

2.4.2.  Phase 2: construction of fuzzy logic 
inference 

Linguistic variables defined 

As an alternative approach to a precise model 
of system analysis, humans can articulate 
an imprecise linguistic description of the 
process or manner of system performance. The 
linguistic description generally has a vagueness 
or fuzziness. For instance, the detection of 
perturbation can be modeled using a rule:

• IF the AP-COP is backward,
• AND the ML-COP is rightward,
• AND the head acceleration is forward,
• THEN the Detection is high.

The terms backward, rightward, forward, and 
high are possible values of the variables AP-COP, 
MP-COP, head acceleration, and detection. The 
values are vague, but meaningful and qualitative. A 
fuzzy set can be associated with each of the vague 
linguistic terms. The variable that has a value of a 
linguistic term is defined as a linguistic variable. 
Zadeh [22, 23, 24] discussed advantages of the 
use of linguistic terms for describing variables. For 
each of the influential variables identified from 
phase 1, three linguistic variables were considered. 
For the dependent variable, two linguistic variables 
were used as shown in Table 1. 

TABLE 1. Linguistic Variables for Independent and Dependent Variables

Independent/Dependent Variables Considered Linguistic Variables
Independent variables AP-COP backward, centered, forward

ML-COP leftward, centered, rightward
EMG-right-TA low, medium, high
EMG-left-TA low, medium, high

EMG-right-GS low, medium, high
EMG-left-GS low, medium, high

head acceleration backward, centered, forward

Dependent variable detect low, high

Notes. AP-COP—anterior-posterior center-of-pressure, ML-COP—media-lateral center-of-pressure, TA—tibial 
anterior, GS— gastrocnemius soleus.
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Fuzzy rule-based inference

Fuzzy conjunction and disjunction operators 
were used to combine matching degrees of 
multiple conditions for each considered rule. 
In the inference step, each relevant rule derived 
a conclusion according to the matching degree 
that was calculated at phase 1. A conclusion 
was inferred by suppressing fuzzy membership 
functions of a rule’s consequent. The clipping 
method was used for suppression in this study. In 
order to take any affecting rule into consideration, 
a combination of inference results of these 
rules was needed. This aggregation process 
was accomplished by superimposing all fuzzy 
conclusions about a considered output variable 
from phase 2. The centroid method was used for 
this process.

Adaptive neural network-based fuzzy 
inference

Generally, it is difficult to identify fuzzy rules 
and tune fuzzy membership functions in fuzzy 
inference systems. However, neural networks 
can apply their learning capability through 
training in this problem. Backpropagation 
learning, one of the most widely used learning 
methods of neural networks, was used to estimate 
membership function parameters and to identify 
fuzzy rules. For the urinalysis test classification, 

the backpropagation learning algorithm was 
derived from a cost function defined by a fuzzy 
predicted output and a corresponding target 
output that would be either detect (1) or no-detect 
(0) of an associated fuzzy input vector. The fuzzy 
membership functions and if–then rules in the 
developed fuzzy inference system were trained 
using the adaptive neural network-based fuzzy 
inference method [25] and tested with a sample 
data set. A detailed discussion of fuzzy logic and 
applications can be found in Yen and Langari 
[26]. In this study, an adaptive neural network-
based fuzzy inference system was built using the 
fuzzyTECHTM (Inform Software Corporation, 
USA) software. 

3. RESULTS

Two data sets of 170 and 169 observations were 
collected from diabetics and non-diabetics, 
respectively. Table 2 shows the observed values 
for the two groups between detect and no-detect. 
To find influential variables, each data set was 
randomly partitioned into training and testing 
data sets, almost equal in size. Table 3 shows 
selected variables with the weights of influence 
on the dependent variable and the mean squared 
error (MSE) of the function approximation during 
training and testing. 

TABLE 2. Observed Measures for Each Group 

Measures

Diabetics Non-Diabetics

Range Detect No-Detect Range Detect No-Detect
AP-COP 
   (mm)

[–7.64, 2.66] –2.20 ± 2.34 –1.27 ± 2.61 [–2.71, 2.22] –0.47 ± 0.96 –0.39 ± 1.15

ML-COP 
   (mm)

[–1.67, 1.14] 0.01 ± 0.72 0.03 ± 0.59 [–1.44, 1.86] 0 ± 0.49 –0.01 ± 0.42

EMG-right-TA  
   (100 mV)

[0, 0.75] 0.06 ± 0.08 0.07 ± 0.18 [0.01, 0.30] 0.06 ± 0.06 0.06 ± 0.06

EMG-left-TA 
   (100 mV)

[0, 0.15] 0.03 ± 0.03 0.03 ± 0.03 [0, 0.12] 0.03 ± 0.04 0.03 ± 0.03

EMG-right-GS  
   (100 mV)

[0.01, 0.25] 0.09 ± 0.08 0.11 ± 0.09 [0.01, 0.36] 0.05 ± 0.06 0.05 ± 0.06

EMG-left-GS 
   (100 mV)

[0.01, 0.42] 0.10 ± 0.08 0.12 ± 0.11 [0.01, 0.20] 0.05 ± 0.05 0.04 ± 0.03

Head acceleration 
   (mm/s2)

[–2.60, 0.56] –0.65 ± 0.66 –0.54 ± 0.62 [–1.79, 1.55] 0.21 ± 0.72 0.22 ± 0.81

Notes. M ± SD was rounded up at the third decimal point. AP-COP—anterior-posterior center-of-pressure, ML-
COP—media-lateral center-of-pressure, TA—tibial anterior, GS— gastrocnemius soleus.
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The criterion of selecting influential variables 
was randomly set at the weight of 0.1. That is, 
variables with the weight greater than 0.1 were 
selected. The differences between diabetics and 
non-diabetics on the selected influential variables, 
i.e., AP-COP, ML-COP, and head acceleration, 
when detecting and not detecting the perturbation 
are shown in Figures 3, 4, and 5. 

TABLE 3. Selection of Influential Variables 

Selected Variables

Weight of Variable

Diabetics Non-Diabetics

AP-COP 0.742 0.751

ML-COP 0.595 0.343

Head acceleration 0.823 0.824
MSE (testing) 0.210 0.213
MSE (validation) 0.221 0.209

Notes. AP-COP—anterior-posterior center-of-pres-
sure, ML-COP—media-lateral center-of-pressure, 
MSE—mean squared error.

Figure 3. Change in AP-COP between detect and no-detect for each group. Notes. AP-COP—anterior-
posterior center-of-pressure.

Figure 4. Change in ML-COP between detect and no-detect for each group. Notes. ML-COP—media-
lateral center-of-pressure.
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Based on the selected influential variables, 
the fuzzy membership functions and rules were 
trained using the training data set to build the 
fuzzy logic inference system. Then, the fuzzy 
logic system was validated by comparing the 
inference from the system built and the actual 
response of detection of perturbation using the 
testing data set. The collected data sets were 
partitioned into the training and testing data sets. 

For training, 100 data points were used for each 
group. Table 4 shows the first five important 
fuzzy logics that were selected on the basis of 
the degree of support (DOS) for detect and no-
detect. Here, the degree of support represents the 
individual weight ranging from 0 to 1 for firing 
the rule. The fuzzy rules for detect showed higher 
degrees of support than for no-detect for both 
groups. 

Figure 5. Change in head acceleration between detect and no-detect for each group.

TABLE 4. Fuzzy Logic for Perturbation Detection 

Subjects
IF 

AP-COP
AND 

ML-COP
AND 

Head Acceleration
THEN 
Detect DOS

Diabetics backward leftward centered low 0.16
backward rightward centered low 0.48
centered rightward centered low 0.30
forward leftward centered low 0.15
forward centered forward low 0.15

backward rightward forward high 0.95
centered leftward forward high 0.99
centered centered centered high 0.99
centered rightward backward high 0.96
centered rightward forward high 1.00

Non-diabetics centered centered centered low 0.16
centered centered forward low 0.16
center rightward forward low 1.00
forward leftward forward low 0.19
forward rightward backward low 0.36

backward leftward forward high 1.00
centered leftward centered high 1.00
centered centered centered high 0.91
centered centered forward high 0.92
forward centered forward high 0.99

Notes. AP-COP—anterior-posterior center-of-pressure, ML-COP—media-lateral center-of-pressure, DOS—
degree of support.
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When the AP-COP, ML-COP, and head 
acceleration were centered, both groups had 
a high DOS for detecting the perturbation. 
Meanwhile, it was difficult to find a common 
logic for the failure of detection between the 
two groups. When the AP-COP, ML-COP, and 
head acceleration were centered, rightward, and 
forward, respectively, the possibility of detection 
was high for diabetics, but low for non-diabetics. 
Contrastingly, when the measures were forward, 
centered, and forward, the trend was reversed. 
Figure 6 through Figure 13 show the trained 
fuzzy membership functions of the variables 

selected for the fuzzy rule inference system for 
diabetics and non-diabetics. The two groups 
showed similar patterns of membership functions 
for the considered variables except the ML-
COP. To test the fuzzy rule inference system, 
70 and 69 data points were used for diabetics 
and non-diabetics, respectively. Table 5 shows 
the comparison between the actual response and 
the prediction from the fuzzy rule inference. The 
fuzzy system showed a relatively high error rate 
when inferring no-detect during the training and 
testing for both groups.

Figure 6. Membership function for AP-COP in diabetics. Notes. AP-COP—anterior-posterior center-of-
pressure.

Figure 7. Membership function for ML-COP in diabetics. Notes. ML-COP—media-lateral center-of-
pressure.
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Figure 8. Membership function for head acceleration in diabetics.

Figure 9. Membership function for detection in diabetics. 
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Figure 10. Membership function for AP-COP in non-diabetics. Notes. AP-COP—anterior-posterior 
center-of-pressure.

Figure 11. Membership function for ML-COP in non-diabetics. Notes. ML-COP—media-lateral center-
of-pressure.
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Figure 12. Membership function for head acceleration in non-diabetics.

Figure 13. Membership function for detection in non-diabetics.

TABLE 5. Performance of Fuzzy Rule Inference System

Actual Response 
(Target) Inference (Prediction)

Training Testing

Diabetics Non-Diabetics Diabetics Non-Diabetics

Detect
detect 64 76 37 40

no-detect*  2  1 13  8

No-detect
detect* 18 14 18 18

no-detect 16  9  2  3

                  Total data points 100 100 70 69

Notes. *—prediction error.
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4. DISCUSSION

Sway patterns and detection of slip perturbation 
in the older populations was modeled using 
neural network-based fuzzy logic algorithms. 
Two groups, diabetics and non-diabetics, showed 
that the detection of slip perturbation was related 
to the AP-COP, ML-COP, and head acceleration 
during quiet standing. Both groups detected 
perturbation with a high possibility when the 
posture was stable. Prieto, Myklebust, Hoffmann, 
Lovett, and Myklebust [27] reported a difference 
of sway between young adults and older adults. 
Sparto, Robinson, and Faulkner [28] found a 
low detection threshold for young adults. The 
result of this study may support the relationship 
between postural steadiness and detection 
of perturbation. One interesting difference 
between the two groups is a pattern of sway with 
respect to perturbation detection. The diabetic 
group showed a high possibility of detection 
when the sway was oriented to the right in the 
media-lateral direction. Meanwhile, the non-
diabetic group detected perturbation with a high 
possibility when the sway was in the anterior-
posterior direction. Another point to be noticed 
is that the distributions of fuzzy membership 
functions for the AP-COP, head acceleration, 
and detection were not quite different between 
diabetics and non-diabetics. However, diabetics 
showed a wider and more backward sway 
pattern than non-diabetics. Also, the difference 
between the membership functions of the ML-
COP for the two groups was noticeable. For the 
diabetic group, the positive relationship between 
the rightward ML-COP and the perturbation 
detection could indicate a different strategy for 
sensing stimuli from the non-diabetic group. The 
inference system was more successful for non-
diabetics than for diabetics. It may indicate that 
the variations of measures are more uncertain in 
the diabetic group compared to the non-diabetic 
one. The success rate of inference was higher for 
detect than for no-detect. From this study, it is 
still unclear how people miss perturbation. 

Results of this study can be applied to 
designing floor mats or safety boot insoles to 
prevent fatigue of the lower extremities or slips 

in workplaces. For instance, diabetics tend to 
sway more on an elastic pad than on a hard floor 
when compared with people with no diabetes 
[29]. Modifications of floor mats or shoe insoles, 
based upon the relationships between sway 
directions and perturbation detection, can reduce 
the intensity of changes of the center of pressure, 
resulting in more stable balance for diabetic 
workers.  

It should be noted that the capability to detect 
perturbation investigated in this study is limited 
to static measures such as sway characteristics 
during quiet standing. The capability to detect 
a slip or fall initiation during gait will be quite 
different from that during quiet standing. The 
relationship between characteristics of postural 
sway and no-detect needs further research to 
find a deficiency of detection when people are 
exposed to slip or fall initiations.
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