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This paper presents a study of the possibilities of evaluating thermal parameters of single and multilayer 
structures using dynamic thermography. It also discusses potential uses of lock-in thermography. It presents 
a simulation of a periodic excitation of a multilayer composite material. In practice, the described methods 
can be employed in various applications, for example, in multilayer nonwoven microelectronic components 
manufactured from hemp fibers, chemical fibers, with an addition of electrically conducting fibers, and in 
medicine and biology.
   This paper describes tests conducted with lock-in thermography on carbon fibre reinforced composites 
with implanted delamination defects. Lock-in thermography is a versatile tool for non-destructive evaluation 
(NDE). Lock-in thermography is a fast, remote and non-destructive procedure. Hence, it has been used to 
detect delaminations in the composite structure of aircraft. This method directly contributes to an improvement 
in safety. 
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1. INTRODUCTION

Carbon fibre composites are now fairly widely 

used in civilian and military aircraft structures. 

Delaminations are common defects found in 

these materials. Their presence leads to structural 

weaknesses, which cause failure of airframe 

structures. It is important to develop effective non-

destructive testing procedures to identify these 

defects and to increase the safety of aircraft travel.

Active thermography can be successfully 
employed in thermal investigations of both 
multilayer and thin film materials [1, 2, 3, 4, 5, 6, 7, 
8, 9]. In microelectronics the multilayer structures 
of thin films are found in many semiconductor 
devices, e.g., power transistors containing joints 
between molybdenum substrates and silicon wafers. 
Thermal properties of thin films play an important 
role in dissipating power. 

We propose a new method of measuring thermal 
conductivity and the thickness of thin layers, also 
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applicable in multilayer structures. We measured 
the surface of this distribution in a very thick 
material measured in the range of micrometers. 
We calculated the phase of the thermal response 
and correlate it with thickness and thermal 
conductivity. The modelling results were compared 
with the measurements. To verify the correctness 
of the proposed approach we conducted tests 
on multilayer structures of different thickness. 
The presented methods and apparatus can be 
used for testing thermal properties of materials 
in microelectronics as well as in medicine and 
biology, e.g., to measure the thickness of skin 
layers.

2. THERMAL MODEL OF 
MULTILAYER STRUCTURE—
PERIODIC EXCITATION

Let us consider a multilayer structure of the 
thickness L as shown in Figure 1. As an exemplary 
structure to verify the correctness of the approach 
we considered thin films of teflon and epoxy placed 
in a carbon-fibre-reinforced polymer (CFRP) [5]. 

Periodically varying heat flux is delivered to 
the upper side of the sample, where convection is 
defined to get real conditions of energy dissipation 
to the ambient. A 1-D model of the heat transfer in 

the solid is expressed as:

(1)

with the boundary conditions represented by 
convective heat transfer coefficients hf at the upper 
and hr bottom side of the sample:

(2)

(3)

An analytical solution of Equation 1 consists of 
dc (Td) and ac (Ta) components of temperature [5].

(4)

By placing Equation 4 in Equation 1 we can get 
the following result:

(5)

with the boundary conditions which are expressed as:

(6)

(7)

The general solution of Equation 1 takes the 
form:

(8)

where

Figure 1. Multilayer structure. Notes. CFRP—carbon-fibre-reinforced-polymer.

TABLE 1. Material Constants Used for Simulations

Material Density (kg m–3) Thermal Conductivity (W m–1 oK–1) Specific Heat (kJ kg-1 oK–1)

CFRP 1,600 0.670 1.200
Teflon 2,150 0.209 1.100
Epoxy resin 1,300 0.200 1.700

Notes. CFRP—carbon-fibre-reinforced polymer.
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For a single layer structure the unknown 
constants A and B can be obtained using previously 
defined boundary conditions, which leads to the 
final set of equations. 

 (9)

At the upper side, for x = 0, where the flux heats 
up the sample, temperature is simply expressed as:

(10)

and the phase can be derived from the equation.

(11)

For a multilayer structure with n layers a similar 
approach is applied for every layer.

 
i = 1,...,n.                                (12)

At each interface between the layers, temperatu-
re is continuous and the same heat flux is on both 
sides of the layer as there is no leakage of energy 
inside the sample. 

 (13)

The interface is characterized by its thermal 
resistance Ri,i+1 and 

 (14)

Figure 2. Phase differences between defective and homogenous areas for an 11-mm thickness of a 
defect, and its depths of (a) 0.28 mm, (b) 0.56 mm, (c) 0.84 mm and (d) 1.12 mm.
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As before, for the upper and lower layer 
convective boundary conditions are applied:

 (15)

By separating the analytical solution for the dc 
and ac components, we get a solution for each 
layer.

 (16)

with unknown constants Ai, Bi

                                      and

methods are very useful in evaluating thermal and 
geometrical properties of single and multilayer 
materials. Using temperature decay during 
cooling down processes, or from the measurment 
phase difference, we can nominate materials 
with different thermal properties, such as thermal 
conductivity and diffusivity. Thermography 
investigations should be performed very carefully 
to reduce interference from elements with a 
significant influence on the result, e.g., infrared 
reflection, non-stable conditions, undefined 
convective heat transfer coefficient. 

In practical inspections, one should try to 
use optimum frequencies. A one-dimensional 
photothermal model can approximately predict the 
result of the inspection. The model is very valuable 

The final set of linear equations takes the form:

(17)
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for selecting inspection parameters, which should 
result in great cost savings. More work on the 
use of active thermography is planned in field of 
improving safety in everyday life and work.

At the upper side of the sample, the amplitude and 
phase of the ac component of temperature can be 
easily calculated as Taf = A1 + B1,  = Arg(A1 + B1).

Finally, the phase difference of the temperature 
between for the place where the defect is, and for 
homogenous material is calculated as Equation 5:

(18)

Simulations were performed for different depths 
of the defect with different material constants 

(Figure 2).

3. CONCLUSION

Lock-in thermography is one of the most promising 
methods for dynamic process investigations 
for possible use in many technical and medical 
applications. Heat transfer modelling proves the 
method potential for defect and multilayer structure 
measurements. The results obtained in this study 
confirm the thesis that lock-in thermography 

SYMBOLS 

Symbol Explanation
L Thickness
Q0 Intensity of the heat source
ω Angular modulation frequency
t Time
k Thermal conductivity
ρ Density
cw Specific heat
x Perpendicular distance from the front 

surface
T Temperature
Tf Temperature of the front surface
Tr Temperature of the rear surface
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T∞ Ambient temperature
hf Surface heat transfer coefficient of 

the front surface
hr Surface heat transfer coefficient of 

the rear surface
Td dc (constant) component of the 

temperature
Ta ac (variable) component of the 

temperature
Tdf Spatial dependence of the dc 

temperature component for the 
front surface

Tdr Spatial dependence of the dc 
temperature component for the 
front surface

Taf Spatial dependence of the ac 
temperature component for the 
front surface

Tar Spatial dependence of the ac 
temperature component for the 
rear surface

Φ Phase difference between the surface 
temperature and the heat source

Ri,i+1 Thermal contact resistance between 
medium i and medium i + 1

Φ Phase difference between the 
defective and the non-defective 
area

Φnon–defective Phase of the non-defective area
Φdefective Phase of the defective area
α Thermal diffusivity
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